BAKALÁRSKA PRÁCA PORTFÓLIO
 DRUŽSTVO NOVŠIE DVORY

OBSAH

Prehlásenie bakalára
Zadanie bakalárskej práce
Sprievodný list
Architektonická štúdia
A. Sprievodná správa
B. Súhrnná technická správa
C. Koordinačné výkresy
D. Dokumentácia stavebného objektu
D. 1 Architektonicko-stavebné riešenie
D. 2 Stavebne-konštrukčné riešenie
D. 3 Požiarne-bezpečnostné riešenie
D. 4 Technické zariadenie budovy
E. Zásady organizácie výstavby
F. Projekt interiéru

České vysoké učení technické v Praze, Fakulta architektury	
Autor:- MAX NERADNY	
Akademický rok / semestr:...........................	
Téma bakalářské práce - český název: DRUĚSTVO NovSIE DVORY	
Téma bakalářské práce - anglický název: NOVÉ DNORY CDOPERHTIVE	
Jazyk práce:............ SLoVENS.....	
Vedoucí práce: Oponent práce:	
Klíčová slova (česká):	
Anotace (česká):	 LINKA METR D. PODKCLDEH PRO PRODEKT JE ÜZEHM SNODE OD NNIT ARCHITEKTI.
Anotace (anglická):	THis bachelor's thesis coners the desion of an aparthent bulcoing WHich is in cooperative ownership. The bildoing is loctited in patha 4 Nové duory district, whilh is to be redeveloped, thanks to the planned Construction or the newest merzo une d. The thears is based an a zoning PINN STUDY PRONIEED AND ELABDRATTD OH UNIT AREMITECTS.

Prohlášení autora
Prohlašuji, že jsem předloženou bakalářskou práci vypracoval samostatně a že jsem uvedl veškeré použité informační zdroje vsouladu s „Metodickým pokynem o etické prípravě vysokoškolských závěrečných praci..
Nendeng

Podpis autora bakalărské práce
Tento dokument je nedílnou, povinnou součástí bakalářské práce i portfolia (titulní list)

1/PŘIHLÁŠKA na bakalářskou práci

Jméno, príjmení:
MAX NERADNY'

Datum narození:
24.05. 2001

Akademický rok / semestr:

Ústav číslo / název:
15118 USTAV NAVKY O BUDOVACH

Vedoucí bakalářské práce:

Téma bakalářské práce - český název:
 \qquad

Téma bakalářské práce - anglický název:
Nové Dvory Cooperative
Podpis vedoucíhơ bakalářské práce:

Prohlášení studenta:

Prohlašuji, že jsem splnil/a podmínky pro zahájení bakalářské práce, které stanovují „Studijní plán" a směrnice děkana „Státní závěrečné zkoušky na FA".

2/ ZADÁNÍ bakalářské práce

jméno a príjmeni:
 Max Neradny

datum narození:

04.05.2001

akademický rok / semestr:
bor:
vedouci bakalăřské práce:
AR 2023/2024 / zimni semestr
Architektura (3501R002)
15118 - Ústav nauky o budovách FA ČVUT v Praze
prof. Ing. arch. Michal Kohout
Družstvo Novšie Dvory
Iz přihlásáka na BP
Zadání bakalářské práce:

Popis zadáni projektu a očekávaného cíle řešeni

Bakalăřská práce zpracuje studii (ATZBP) Družstvo Novšie Dvory vypracovanou v ZS 2022/2023 Ateliéru Kohout-Tichý. Projekt se skládáz bytového domu a podzemních garáži. Bakalářská práce prokǎže chopnost zpracovatele převést studii do projektu v rozsahu dokumentace pro stavebni povolení (DSP) dokumentace pro provedeni stavby (DPS)

/ Popis závěrečného výsledku, výstupy a měrítka zpracování

Podrobnosti a rozsah bude odpovidat pokynûm dle dokumentu Obsah bakalářské práce pro Z S 202z/2028 a odrobnosti a orientačně obsahovat následujicíi

A.	Průvodní zpráva
B.	Souhrnná technická zpráva
C.	Situač̃ni vy̌kresy

$\begin{array}{ll}\text { C. } 1 . & \text { Situačni vykresy } \\ \text { Dokumentace stavebniho projektu }\end{array}$
D.1.1. Architektonicko-stavebni řešeni

- Technická zprava
- Vy̌kresová cást 1:5-1:250
- Stavebni jáma

Půdorysy podlaží, střechy

- Pohledy
- Specifikace - skladby konstrukcí a povrchů, seznam výrobkù
- Detaily
D.1.2. Konstrukční řešení - statické posouzeni
D.1.3. Požárně bezpec̆nostní řešen
D.1.4. Technika prostředi staveb
D.2. Dokumentace technických zar̆ízen
E. Zásady organizace výstavby

3/ Seznam prípadných dalšich dohodnutých části BP
Rozsah a podrobnosti budou připadně upraveny během konzultací bakalářské práce
.
Datum a podpis studenta 18.9.2023 Nerady
Datum a podpis vedoucího.DP
19.9 .2023 Golut

Předmět:

Obor:
Ročník:
Semestr:
Konzultace:

Bakalářký projekt

Provádění a realizace staveb

3. ročník
zimni letni
dle rozpisů pro ateliéry

Jméno studenta: MAX NERADN's	podpis: Neady
Konzultant: ING. RADKA NAMRÁfiLUVA, Ph.D.	podpis: /rach

Obsah - bakalářské práce - zimni / letní semestr

Bakalářská práce z části realizace staveb vychází ze cvičení PRES1, které může sloužit jako podklad pro zpracování bakalářské práce. Cvičeni z PRES1 vložené bez úprav a značení (viz dále) do bakalářské práce nebude uznáno.

Obsah části Realizace staveb:

1. Textová část (dopIněná potřebnými skicami)
1.1. Návrh postupu výstavby řešeného pozemního objektu v návaznosti na ostatní stavební objekty stavby se zdůvodněním. Vliv provádění stavby na okolní stavby a pozemky.
1.2. Návrh zdvihacích prostředků, návrh výrobnich, montážních a skladovacích ploch pro technologické etapy zemní konstrukce, hrubá spodní a vrchní stavba.
1.3. Návrh zajištění a odvodnění stavební jámy.
1.4. Návrh trvalých záborů staveniště s vjezdy a výjezdy na staveniště a vazbou na vnějši dopravní systém.
1.5. Ochrana životního prostředí během výstavby.
1.6. Rizika a zásady bezpečnosti a ochrany zdraví při práci na staveništi, posouzení potřeby koordinátora bezpečnosti a ochrany zdraví při práci a posouzení potřeby vypracování plánu bezpečnosti práce.

2. Výkresová část

2.1. Celková situace stavby se zakreslením zařízení staveniště:

- Hranic staveniště - trvalý zábor.
- Staveništní komunikace s vjezdy a výjezdy ze staveniště a vazbou na vnějš dopravní systém.
- Zdvihacích prostředků s jejich dosahy, základnou a případně jeřábovou dráhou.
- Výrobnich, montážních, skladovacich ploch a ploch pro sociální zařízení a kanceláře.
- Úpravy staveniště z hlediska bezpečnosti práce a ochrany zdraví při práci.

Bakalářský projekt

ZADÁNÍ STATICKÉ ČÃSTI

Jmeno studenta: Neradny Max
Ateliér: Kohout-Tichý
Konzultant: Martin Pospíšil
Řešení nosné konstrukce zadaného objektu.

- Výkresy nosné konstrukce včetně založení
A. Výkresy
a. Výkres tvaru železobetonové stropní konstrukce nad 2. NP 1:100
b. Výkres tvaru železobetonové stropní konstrukce nad 1. PP 1:100
c. Výkres tvaru a výztuže přiznaného průvlaku nad 2.NP 1:20
d. Výkres tvaru a výztuže sloupu 1:20
B. Technická zpráva statické části
a. Jednoduchý strukturovaný popis navržené konstrukce (bude popsána koncepce a působení konstrukce jako celku)
b. Popis vstupních podmínek:

1. základové poměry
2. sněhová oblast
3. větrová oblast
4. užitná zatížení (rozepsat dle prostor)
5. literatura a použité normy
C. Statický výpočet
6. Návrh a posouzení železobet. stropní desky obousměrně vyztužené nad 2.NP
7. Návrh a posouzení železobetonového skrytého průvlaku nad 2.NP
8. Návrh a posouzení železobetonového přiznaného průvlaku nad 2.NP
9. Návrh a posouzení železobetonového sloupu ve 3.PP

(PLATT'I PRO

BAKALÁŘSKÝ PROJEKT ARCHITEKTURA A URBANISMUS ZADÁNÍ Z ČÁSTI TZB

Ústav :	Stavitelství II - 15124
Akademický rok :	. 2023/2024
Semestr :	LETNY

Podklady: http://15124.fa.cvut.cz

Jméno studenta	MAX NERADNY'
Konzultant	ING. DAGMAR RICHTRDVA'

Obsah bakalářské práce:
Koncepce řešení rozvodů TZB v rámci zadaného objektu

- Koordinační výkresy návrhů vedení jednotlivých instalací v podlažích

Návrh vedení vnitřních rozvodů vody (pitné , provozní, požární, odpadní splaškové - šedé a bílé), způsob nakládání s deštovou vodou (akumulace, retence, vsakování), rozvodủ plynu systému vytápění, větrání, chlazení, návrh vnitřniho domovního rozvodu elektrické energie a způsob nakládání s tuhými komunálními odpady.
Umístění instalačních, větracích, výtahových šachet, případně alternativní stavební úpravy pro stoupací a odpadní vedení, umístění komínů a trvale otevřených větracích otvorů. U rozvodů elektrické energie umístit hlavní a podružné rozvaděče, u požárního vodovodu hydrantové skříně, případně zázemí pro SHZ (nádrž a strojovna). V rámci stavby (nebo souboru staveb) definovat a umístit zdroj pro vytápění, ohřev TV, strojovnu vzduchotechniky, příp.chlazení. Vymezit prostor pro silno a slaboproudé rozvodny, MaR a podle potřeby pro záložní zdroj energie. Vyznačit místa pro měření spotřeby, regulaci a revizi vedení.

Půdorysy v měřítku 1 : 100

- Souhrnná koordinační situace širších vztahů

Návrh osazení objektu na pozemku, vyznačení vedení jednotlivých rozvodủ technické infrastruktury a vytrasování jednotlivých domovních přípojek s osazením jejich kontrolních objektů (výstupní a revizní šachty, objekty pro hospodaření s dešt’ovou vodou, technologické šachty, vodoměrné šachty, HUP, přípojkové skřině, umístění popelnic...). Zakreslit připadné napojení na lokální zdroje vody nebo lokální způsob likvidace odpadních vod

- Bilanční výpočty

Předběžný návrh profilů připojek (voda, kanalizace), velikost akumulačních/retenčnich /vsakovacích objektủ, předbĕžná tepelná ztráta objektu, orientační návrh
větracich/chladicich zařizeni (velikost vzduchotechnické jednotky a minimálně rozměry hlavních distribučních vzduchotechnických rozvodů).

- Technická zpráva

Praha........4. 20 24

* Možnost prípadné úpravy zadání konzultantem

Podpis konzultanta
7

PRŮVODNÍ LIST

ZÁVAZNÝ OBSAH SOUHRNNÉ A STAVEBNí ČÁSti

Prủvodní list bakalářské práce

PRŮVODNÍ LIST

Tabulky	Výplně otvorů (okna, dveře)	\checkmark
	Klempířské konstrukce	\checkmark
	Zámečnické konstrukce	\checkmark
	Truhlářské konstrukce	-
	Skladby podlah	\checkmark
	Skladby střech	\checkmark

DALŠí POŽADOVANÉ PŘíLOHY

Jednotlivé přilohy projektu budou zpracovány v souladu s podkladem OBSAH BAKALÁŘSKÉ PRÁCE - ARCHITEKTURA A URBANISMUS.

Formální provedení projektu (formát, počty paré atd.) určí vedoucí práce.

ARCHITEKTONICKÅ ŠTÚDIA PORTFÓLIO
 DRUŽSTVO NOVŠIE DVORY

DRUŽSTVO NOVŠIE DVORY

ANALÝZA

V pražskej mestskej časti Nové Dvory sa chystajú vel'ké zmeny. Pozornost' investorov a developerov pritiahol projekt výstavby novej linky metra D. Jedna z jej staníc vznikne na križovatke významných ulíc Libušská a Durychova. Spolu s ulicami Chýnovská a Novodvorská vymedzujú uzemie, ktoré je v súčasnosti vel'mi nešt'astne využite

Ateliér Unit Architekti, vypracoval urbanistickú štúdiu, ktorá sa snaží túto skutočnost' diametrálne zmenit'. Z brownfieldu by sa tak mohla stat' ukážková nová štvrt', ktorá poslúži za príklad dômyselného koordinovaného developmentu moderných miest.

Úlohou študentov Ateliéru Kohoutichý je vyplnit novovzniknuté parcely podl'a štúdiou stanovených regulácií.

Riešené územie obsahuje mix rôznych typov mestskej zástavby: od rodinných domov až po gigantické paneláky. Tento nežiaduci kontrast sa v štúdii snažíme vyriešit' pomocou regulácie výšky budov. Ciel'om je vytvorit' akúsi gradáciu vyśsových hladín, ktorá tento kontrast zredukuje a začlení tak pôvodnú aj novú zástavbu do nového uceleného obrazu Nových Dvorov.

Parcela, do ktorej navrhujem svoju bakalársku prácu sa nachádza v bloku 02 04, ktorý je v centre novodvorského superbloku, a teda je chranena pred ruchom dopravy. Jednou fasádou je v kontakte s lokálnym námestím, na druhej strane je poloverejný vnútroblok s materskou škôlkou.

Účelom budovy, ktorá ju zaplní je bytový dom. Narozdiel od ostatných parcel v bloku však stavebníkom nie je mesto, ale družstvo. Družstvo Novšie Dvory.

AXONOMETRIA BLOKU

KONCEPT

Parcela je svojou polohou na námestí predurčená k tomu, aby sa v nej prejavil vyšší štandard. Presne preto sa družstevníci rozhodli premenit tento pozemok na ich nový domov, kde sa budú cítit uvolnene a bezpečne. Všetko dôležité je v dochádzkovej vzdialenosti - poliklinika, nákupy, park, skola materská aj základná. Co nie je v dochádzkovej vzdialenosti vyrieši metro, električka alebo automobil.

Sú tu ideálne podmienky na rodinnýz život, čo sa prejaví v stavebnom programe bytového domu družstva. Bude obsahovat byty, ktoré počítajú s troj až štvorčlennými rodinami. Tento trend bude doplneny aj o menšie byty pre členov družstva, ktorý rodinu ešte len plánujú, alebo už Žijú samostatne.

Dom sa snažím navrhnút tak, aby sa koncept rodiny dostal až na úroveň celej stavby. Komunikačné priestory otvárajú príležitosti k tomu, aby sa v nich l'udia stretli a mohli spolu interagovat.

Pre skutočné ucelenie komunity slúži ustúpené siedme podlažie, ktoré je v celej ploche zdiel'aný priestor družstva. Obyvatelia sa tu majú možnost' stretnút v saune, v posilovni alebo v spoloćenskej miestnosti. Ku všetkym týmto priestorom priliehajú štedré vonkajšie plochy vhodné k socializácii napr. pri grillovaní.

Ekonomika týchto provozov je najmenej čiastočne zabezpečená prenájmom priestorov v parteri domu. Budú tu dve prenajímatel'né jednotky, z nich jedna je dvojpodlažná v dôsledku reliéfu terénu. Obe jednotky sú prístupné rovnako z námestia ako aj z vnútrobloku, čo ich robí vel'mi prestízne.

PROJEKT

Navrhovaná budova má 6 nadzemných podlaží plus jedno ustúpené podlažie. Navrhol som dve varianty typického podlažia, aby vznikla variácia vel'kostí bytov. Dopravu v klude riešia podzemné garáže, ktoré sú spojené v celom bloku z dôvodu efektivity. K tejto parcele priliehajú dokopy tri podzemné podlažia, ktoré zabezpečia až 2 státia na byt. Nadbytočné státia sa prenajmú alebo predajú záujemcom z ostatných domov v boku.

Vo vnútrobloku má družstvo vo vlastníctve niekol'ko metrov štvorcových pozemku, ktorý je parkovo upravený ako pobytový poloverejný priestor

1 vstup z námestia
2 vstup z vnútrobloku
3 hala so schodiskom
4 schodisko do garáží
5 priestor pre odpadky
7 priestor na prenájom
8 priestor na prenájom

TNP A 1:150

\oplus

TNP B
1:150

\oplus

UNP
1:150

\oplus

1PP
1:150

\oplus

${ }_{82}{ }^{3+k k} \mathrm{~m}^{2}$
$3+\mathrm{kk}$
$83,4 \mathrm{~m}^{2}$
$2+\mathrm{kk}$
$54,9 \mathrm{~m}^{2}$
TNP
A

TNP

B

Gym
$45,1 \mathrm{~m}^{2}$Spa
$72,8 \mathrm{~m}^{2}$${ }_{26,9 \mathrm{~m}}$
4+kk
$117,1 m$$2+\mathrm{kk}$
$58,2 \mathrm{~m}^{2}$

BILANČNÉ ÚDAJE BUDOVY

Celková plocha riešeného pozemku:
Zastavaná plocha navrhovaného objektu:
381,60 m ${ }^{2}$ $381,60 \mathrm{~m}^{2}$
Hrubá podlahová plocha:2561,83 m²$1734,86 \mathrm{~m}^{2}$243,75 m ${ }^{2}$356,14 m² 227,68 m²

$$
1182,96 \mathrm{~m}^{2}
$$

Podlahová plocha podzemných podlaží

(68\%)

STAVEBNÝ PROGRAM

Počet uvažovaných bytov: 18
-TNP A (x3) 12
-TNP B (x2) 6
Počet parkovacich statí pre navrhovany objekt 36
Z toho počet státí pre invalidov: 3
Počet pivničných kójí:

ČASŤ A
 SPRIEVODNÁ SPRÁVA

BAKALÁRSKA PRȦCA:
VYPRACOVAL:
VEDÚCI PRÁCE:
KONZULTANTI:

SEMESTER:
ATELIÉR:

Družstvo Novšie Dvory
Max Neradný
prof. Ing. arch. Michal Kohout
doc. Ing. arch. David Tichý, Ph.D.
Ing. arch. Jan Hlavín, Ph.D.
doc. Dr. Ing. Martin Pospíšil, Ph.D.
Ing. Marta Bláhová
Ing. Dagmar Richtrova
Ing. Radka Navrátilová, Ph.D letný semester 2023/2024 Kohout-Tichý

FAKULTA
ARCHITEKTURY
ČVUT V PRAZE

Názov stavby:	Družstvo Novšie Dvory
Účel stavby:	Bytový dom
Miesto stavby:	Praha 4 - Lhotka
Charakter stavby:	Novostavba
Účel projektu:	Bakalárska práca
Stupeň dokumentácie:	Dokumentácia pre stavebné povolenie (DSP)
Dátum spracovania:	Zimný semester 2023/2024 (7.semester)

A. 2 Údaje o spracovatelovi projektovej dokumentácie

Spracovatel' projektovej dokumentácie: Max Neradný
Vedúci bakalárskej práce: prof. Ing. arch. Michal Kohout

Konzultanti bakalárskej práce:

Náuka o stavbách	doc. Ing. arch. David Tichý, Ph.D
Pozemné stavitel'stvo	Ing. arch. Ján Hlavín, Ph.D
Statika a konštrukcie	doc. Dr. Ing. Martin Pospišil, Ph.D
Požiarna ochrana	Ing. Marta Bláhová
Technické zabezpečenie	Ing. Dagmar Richtrová
Realizácia a ekonómia	Ing. Radka Pernicová, Ph.D

A. 3 členenie stavby na stavebné objekty

SO 01
SO 02
SO 03
SO 04
SO
SO 0
SO 06

Ing. arch. Ján Hlavín, Ph.D
r. Ing. Martin Pospíšil Ph D

Ing. Dagmar Richtrov
Ing. Radka Pernicová, Ph.D

001	Hrubé terénne úpravy	SO 03a	Vodovod
002	Bytový dom	SO 03b	Splašková kanalizácia
003	Prípojky	SO 03c	Silnoprúd
004	Spevnené plochy	SO 03d	Akumulačná nádrž
005	Operná stena	SO 03e	Dažd'ová kanalizácia
006	Čisté terénne úpravy	SO 03f	Požiarny vodovod

A. 4 Zoznam vstupných podkladov

1. Územní studie Nové Dvory - UNIT architekti (09/2022)
2. Architektonická štúdia ATZBP - Max Neradný (ZS 2022/2023)
3. Stratigrafický výpis geologické dokumentace vrtu - Česká geologická služba (1981)
4. Pražske stavební predpisy - IPR Praha (2018)
5. České stavebné normy a Európske normy

ČSN 73 0818	ČSN 73 0802	ČSN 73 0873	ČSN 73 0833
ČSN 73 0821	ČSN 730834	ČSN 73 0810	ČSN 01 3495
ČSN EN 1990	ČSN EN 1991	ČSN EN 1992	ČSN EN 1996
ČSN EN 13501	ČSN EN 14604	ČSN EN 1838	ČSN ISO 3864

B.1.1 Charakteristika územia a stavebného pozemku
B.1.2 Údaje o súlade s územne plánovacou dokumentáciou
B.1.3 Zoznam a závery urobených prieskumov a rozborov
B.1.4 Požiadavky na demolíciu a rúbanie stromov
B.1.5 Územne-technické podmienky - napojenie na infraštruktúru
B.1.6 Vecné a časové väzby stavby
B.1.7 Zoznam pozemkov, ktorých sa stavba dotýka
B. 2 Celkový opis stavby
B.2.1 Základná charakteristika stavby a jej užívania
B.2.2 Celkové urbanistické riešenie
B.2.3 Celkové architektonicko-stavebné riešenie

ČASṪ B

SÚHRNNÁ TECHNICKȦ SPRÅVA

BAKALÁRSKA PRÁCA:
VYPRACOVAL:
VEDÚCI PRȦCE:
KONZULTANTI:

SEMESTER:
ATELIÉR:

Družstvo Novšie Dvory
Max Neradný
prof. Ing. arch. Michal Kohout doc. Ing. arch. David Tichý, Ph.D. Ing. arch. Jan Hlavín, Ph.D. doc. Dr. Ing. Martin Pospíšil, Ph.D. Ing. Marta Bláhová Ing. Dagmar Richtrová Ing. Radka Navrátilová, Ph.D. letný semester 2023/2024 Kohout-Tichý

FAKULTA
ARCHITEKTURY
ČVUT V PRAZE
B.2.3.1
B.2.3.2
B.2.3.3
B.2.3.4
B.2.3.5
B.2.3.6
B.2.3.7
B. 23.8
B.2.3.8
B.2.3.9
B.2.3.10
B.2.3.11
B.2.3.12
B.2.3.13
B.2.3.14
B.2.3.15
B.2.3.16

Základové konštrukcie
Zaistenie stavebnej jamy
Hydroizolácia spodnej stavby Horizontálne konštrukcie
Vertikálne konštrukcie
Schodiská
Sachty
Podlahy
Strechy
Balkóny
Lodžie
Výplne otvorov
Omietky a obklady Klampiarske výrobky Zámočnícke výrobky Sauna
B.2.4 Celkové prevádzkové riešenie
B.2.4.1 Odpadové hospodárstvo
B.2.5 Bezbariérové užívanie stavby
B.2.6 Bezpečnost' pri užívaní stavby
B.2.7 Zásady požiarnej bezpečnosti a ochrany
B.2.7.1
B.2.7.2
B.2.7.3
B.2.7.4
B.2.7.4
B.2.7.5
B.2.7.6
B.2.7.7

Požiarna odolnost' konštrukcií Evakuácia osôb Únikové cesty Zabezpečenie stavby požiarnou vodou Hasiace prístroje Požiarno-bezpečnostné zariadenia Hasenie a záchranné práce
B.2.8 Technické zariadenie budovy
B.2.8.1 Vodovod
B.2.8.1.1 Bilancia spotreby vody
B.2.8.1.2 Ohrev teplej vody
B.2.8.1.3 Rozvody v interiéri
B.2.8.1.4 Požiarny vodovod
$\begin{array}{ll}\text { B.2.8.2 } & \text { Splašková kanalizácia } \\ \text { B.2.8.3 } & \text { Dažd'ová kanalizácia }\end{array}$
B.2.8.3 Dažd'ová kanalizácia
B.2.8.4 Vykurovanie
B.2.8.5 Úspora energie a tepelná ochrana
B.2.8.6 Chladenie
B.2.8.7 Vetranie
B.2.8.7.1 Prirodzené vetranie
B.2.8.7.2 Nútené vetranie

B.2.8.8 Eletrické rozvody

B.2.9 Požiadavky na životné prostredie
B.2.10 Ochrana pred negatívnymi účinkami prostredia
B.2.11 Dopravné riešenie
B.2.12 Terénne úpravy
B. 3 Zásady organizácie výstavby
B.3.1 Základná charakteristika staveniska
B.3.2 Majetkoprávne riešenie
B.3.3 Zoznam stavebných a búraných objektov
B.3.4 Zásobovanie stavby stavebným materiálom
B.3.5 Postup výstavby
B.3.6 Návrh debnenia
B.3.7 Návrh žeriavu
B.3.8 Návrh zaistenia a odvodnenia stavebnej jamy
B.3.9 Návrh záborov staveniska
B.3.10 Ochrana životného prostredia počas výstavby
B.3.11 Bezpecnost a ochrana zdravia pri praci
B. 4 Výpis použitých noriem a predpisov
B.4.1 Pražské stavebné predpisy - IPR Praha (2018)
B.4.2 České a európske technické normy
B.4.3 Zákony Českej Republiky

OPIS ÚZEMIA STAVBY

B.1.1 Charakteristika územia a stavebného pozemku

Riešený objekt sa nachádza v Prahe, presnejšie v mestskej časti Praha 4 - Lhotka. L'udovo sa toto územie nazýva Nové Dvory. V súčasnosti sa dá považovat' za relatívne odl'ahlú lokalitu za mestským okruhom, v blízkosti Kunratického lesa. Avšak, základným podkladom pre návrh tejto stavby je nová územná štúdia pre Nové Dvory, ktorá zohl'adňuje vznik dlhoočakavanej linky metra D, od ktorej sa očakava, že vyrazne zlepsí dostupnost tohoto územia Parcela Družstva Novšie Dvory sa nachádza v dochádzkovej vzdialenosti od budúcej stanice metra D - Nové Dvory a pribudne tu aj konečná zastávka pre električkové spoje, ktoré nahradia súčasnú nekomfortnú autobusovú dopravu.

Novovzniknutá parcela, ktorú si družstvo zakúpilo je situovaná v prevažne obytnom bloku, ktorý bude mat' poloverejný priechodný vnútroblok. Čelná fasáda bude orientovaná do nového námestia s pobytovým charakterom a občianskou vybavenost'ou. Pozemok bude zastavaný len z väčšej časti, nezastavaná čast' bude navrhnutá ako záhradka pre obyvatelov družstva a nájomníkov v prízemí

Nadmorská výška parcely sa pohybuje medzi 303 až 304 m.n.m (b.p.v) a klesá smerom na sever. Vzhl'adom na náväznosti územnej štúdie na existujúce komunikácie a zástavbu budú terénne úpravy minimálne. Fasády sú orientované na východ (námestie) a na západ (vnútroblok), zo severu aj z juhu bude stavba susedit' s d'alšími bytovými domami.
B.1.2 Údaje o súlade s územne plánovacou dokumentáciou

Stavba je navrhnutá v súlade s platným územným plánom a na základe schválenej navrhovanej územnej štúdie pre oblast' Nové Dvory od Unit architekti. Návrh rešpektuje výškové a hmotové regulácie vyplývajúce zo spomínanej štúdie. Zároveň splíňa požiadavky na využitie prvého podlažia a uličnú čiaru.
B.1.3 Zoznam a závery urobených prieskumov a rozborov

Návrh zohl'adňuje hydrogeologické a geologické pomery, ktoré vyplývajú z archívneho vrtu Českej geologickej služby. Vrt LIJ42 bol realizovaný v roku 1968, zameraný je na súradniciach $X=1051010 ; Y=741802$ do híbky 12 metrov. Hladina spodnej vody bola narazená v úrovni 295,9 m.n.m (b.p.v), tj. $-7,980 \mathrm{~m}$ od projektovej $\pm 0,000$. Založenie stavby je v úrovni $-10,500$, tzn. pod hladinou spodnej vody. Graficky spracovaný stratigrafický výpis vrtu je k dispozícii v časti E.

B.1.4 Požiadavky na demolíciu a rúbanie stromov

Pozemok zasahuje do štyroch existujúcich stavebných objektov, ktoré je nutné zdemolovat' pred začatím stavby:

> BO 01 - TENISOVÉ KURTY SEVER
> BO 02 - TENISOVÉ KURTY JUH
> BO 03 - TENISOVÉ KURTY ZÁPAD
> BO 04 - PARKOVISKO Z ASF. BETÓNU

Na pozemku sa nenachádzajú žiadne ekologicky významné stromy, len nízke náletové dreviny a trávy, ktoré nebudú pri stavebných prácach chránené ani zachované.

B.1.5 Územne-technické podmienky - napojenie na infraštruktúru

Návrh predpokladá realizáciu cestnej aj technickej infraštruktúry pred započatím stavby jednotlivých domov. Všetky zložky verejnej infraštruktúry sú teda zdokumentované v územnej štúdii Nové Dvory. Objekt je napojený na vodovod, teplovod, silnoprúd a splaškovú kanalizáciu. Tieto siete sú vedené ulicou na východnej strane objektu, kde sa budú pod chodníkom nachádzat jednotlivé prípojky a v prípade splaškovej kanalizácie revizná šachta s čistiacou tvarovkou. Daždová kanalizácia je riešená koordinovane v celom bloku - vo vnútrobloku sú navrhnuté retenčné a akumulačné nádrže využívané na d'alšie hospodárenie s daždoovou vodou.

Napojenie na dopravnú infraštruktúru sa nachádza mimo pozemku investora. Podzemné garáže sú navrhnuté koordinovane pre celý blok s vjazdom a výjazdom na severnej strane bloku. Dom je napojený na pešie komunikácie v ulici aj vo vnútrobloku.

B.1.6 Vecné a časové väzby stavby

Po dokončení prípravy územia podl’a územnej štúdie hlavným investorom a koordinátorom (hl.m. Praha), si investor projektu (družstvo) vezme pôžičku na realizáciu stavby. Realizácia stavby bude prebiehat' v dvoch etapách:

Etapa 1 - Koordinovaná stavba
Krok 1 - Vytýčenie bloku a parcie
Krok 2 - Zriadenie a zariadenie staveniska
Krok 3 - Výkopové práce a zaistenie stavebnej jamy
Krok 4 - Základy a hrubá stavba podzemných podlaží
Krok 5 - Napojenie prípojok
Etapa 2 - Jednotlivé stavebné objekty
Krok 1 - Hrubá stavba nadzemných podlaží
Krok 2 - Stavba strechy
Krok 3 - Hrubé vnútorné konštrukcie a montáž výplní otvorov

- Zateplovanie stavby a úprava vonkajších povrchov
- Realizácia spevnených plôch a opernych stien na pozemku

Krok 4 - Dokončovacie konštrukcie
Krok 5 - Čisté terénne úpravy

B.1.7 Zoznam pozemkov, ktorých sa stavba dotýka

Stavba sa nachádza výhradne na pozemkoch v majetku investora (družstva). Pri realizácii stavby však dojde k dočasnému záboru na pozemku vo vlastníctve hl. m. Prahy, na ktorom je navrhnutá komunikácia a prístup vozidiel k stavenisku.

B.2.1 Základná charakteristika stavby a jej užívania

Stavba je súčastou bloku, v ktorom susedí s dvoma d'alšími bytovými domami. Hlavný vstup do objektu je z námestia, vedl'ajší z vnútrobloku poprípade z hromadných garáží. Stavba má 7 nadzemných a 3 podzemné podlažia. Objekt má obdížnikový pôdorys $18 \times 21,2 \mathrm{~m}$, v 2 . až 7 . podlaží má na oboch stranách arkier, ktorý presahuje uličnú čiaru o 1 meter podl'a normových požiadavkov. Stavba má na oboch fasádach po 6 balkónov a na fasáde orientovanej do vnútrobloku má aj 4 lodžie. Siedme nadzemné podlažie je ustúpené a nachádza sa tu prevádzková strecha. Strecha objektu je plochá so substrátom a extenzívnou zeleňou.

Investorom stavby je Družstvo Novšie Dvory pozostávajúce z 18 fyzických osôb. Budova je určená na trvalý pobyt členov družstva a ich rodín, a teda jej primárnou funkciou je bytovy dom. V prízemí sú navrhované dve prenajímatel'né jednotky, ktoré sú uvažované ako majetok družstva. Nájomné bude pripisované na družstevný účet a podl'a družstevného poriadku využívané na výdavky spojené s chodom a údržbou stavby. Dodatočne budú členovia na základe družstevného poriadku platit' "družstevné", ktoré rovnako poslúži ako kapitál na výdavky spojené s chodom a údržbou stavby.
B.2.1.2 Základné výmery a údaje stavby

Plocha parcely pre bytový dom:	530,00	$\mathrm{~m}^{2}$
Zastavaná plocha parcely:	381,60	$\mathrm{~m}^{2}$
Spevnené plochy parcely:	58,70	$\mathrm{~m}^{2}$
Nespevnené plochy parcely:	89,70	$\mathrm{~m}^{2}$
Hrubá podlahová plocha:	2561,83	$\mathrm{~m}^{2}$
Zastavaný objem:	8338,50	$\mathrm{~m}^{3}$
Nadmorská výška objektu:	$\pm 0,000$	$=303,880$ m.n.m. (b.p.v)
Výška atiky objektu:	$+23,500$	$=327,380$ m.n.m. (b.p.v)
Projektovaný počet obyvatel'ov:	36	osôb
Počet parkovacích státí:	36	státí

B.2.2 Celkové urbanistické riešenie

Objekt je zakomponovaný do urbanistického riešenia vychádzajúceho z územnej štúdie Nové Dvory od Unit architekti, na základe regulácií a požiadavkov, ktoré táto štúdia definuje. Hlavný koordinačný výkres územnej štúdie je súčastou priloženej architektonickej štúdie. Objekt je súčastou stavebne koordinovaného bloku (B02_04 podl'a štúdie), ktorý na východe lemuje lokálne námestie (N02_02 podl'a štúdie). Blok nie je úplne kompaktný, do jeho vnútrobloku sa dá dostat' tromi priechodmi, čo robí tento vnútroblok poloverejným priestorom. Požiadavok štúdie určuje v bloku prítomnost' materskej školy s tromi triedami, ktorej exteriérové priestory budú začlenené do vnútrobloku. Ďal'šími reguláciami, ktoré sa týkajú navrhovaného objektu sú otvorená alebo uzavrená stavebná čiara a odporúčaný aktívny parter na strane orientovanej do lokálneho námestia. Na záver ešte požiadavok na zakomponovanie zelenej strechy do návrhu.

Dôležitou súčast'ou územnej štúdie sú stanovené požiadavky na občiansku vybavenost', ktorá má na riešenom území vzniknút. Uvažuje sa návrh obchodných plôch, pošty, polikliniky, služobne polície, kultúrneho centra, knižnice, základnej školy, 2 materských škôl a športového areálu s viacúčelovou športovou halou s bazénom. Nechýba návrh nových zastávok mestskej hromadnej dopravy vo forme metra, električiek a autobusov. Návrh počíta aj s transformáciou neudržiavanej zelene na východe riešeného územia na vel'ký rekreačný park.

Architektonické riešenie objektu vychádza z požiadavkov investora (družstva) na zastúpenie rôznych zdiel'aných priestorov (sauna, posilovňa a komunitný byt), bytov vel'kostí na základe potrieb jednotlivých členov družstva a prenajímatel'ných priestorov v prospech hospodárstva družstva. V podzemí objektu sú okrem parkovacích státí navrhované dodatočné skladové jednotky, miestnost' pre odkladanie bicyklov a kočíkov, technické miestnosti a strojovne. Dom má halovú dispozíciu, byty sú navrhované tak, aby boli denné miestnosti oddelené od nočných. Objekt má dve typické obytné podlažia: typ A (zastúpený 3x) obsahuje dva byty $3 \mathrm{kk}\left(83,4 \mathrm{~m}^{2}\right)$ s balkónom ($5,2 \mathrm{~m}^{2}$), jeden byt $3 \mathrm{kk}\left(82,6 \mathrm{~m}^{2}\right) \mathrm{s}$ balkónom ($5,2 \mathrm{~m}^{2}$) a jeden byt 2 kk ($54,9 \mathrm{~m}^{2}$) s balkónom ($5,2 \mathrm{~m}^{2}$); typ B (zastúpený 2 x) obsahuje dva byty 4 kk ($117,1 \mathrm{~m}^{2}$) s lodžiou $\left(4,8 \mathrm{~m}^{2}\right)$ a jeden byt $2 \mathrm{kk}\left(58,2 \mathrm{~m}^{2}\right)$ bez vonkajších priestorov. Družstevné priestory (sauna, posilovňa a komunitný byt) sú sústredené v siedmom ustúpenom podlaží. Navrhované sú tu aj spoločné terasy spergolou, miestnost' na upratovanie spoločných priestorov a zdiel'ané WC.

Fasáda domu je navrhovaná ako kompaktný zateplovací systém ETICS s povrchovou úpravou omietkou a obkladovými pásikmi Klinker. Z obkladových pásikov je na fasáde vytvorený vzor, ktorý je odlišný tvarom a farbou pre vnútroblok a pre námestie. Estetický výraz fasády dotvárajú rôzne fasádne prvky ako napríklad zásobníky pre kvetináče, zábradlia navrhnuté na mieru, markízy a tieniace rolety na oknách a nápisy označujúce prevádzky v prízemí či popisné číslo domu.

B.2.3.1 Základové konštrukcie

Návrh základových konštrukcií musí rešpektovat' zistenia z hydrogeologického prieskumu , ktoré hovoria, že hladina podzemnej vody bola narazená v híbke cca 8 metrov. Základová spára sa nachádza v híbke 11,53 metra (11,13 až $11,93 \mathrm{~m}, \mathrm{z}$ dôvodu sklonu nivelety vozovky v podzemných garážach, tzn. 3,1 až $3,9 \mathrm{~m}$ pod hladinou spodnej vody). Základové konštrukcie sú preto navrhnuté ako kombinácia systému bielej a čiernej vane. Żelezobetónová základová doska je v 5\% pozdľ̌nom sklone, má projektovanú hrúbku 800 mm , betón triedy C30/37 XC2, založená je na podkladnom betóne triedy $\mathrm{C} 16 / 20$ XO o hrúbke 150 mm , na ktorý bude nanesený asfaltový penetračný náter a celoplošne teplom natavená hydroizolácia z dvoch SBS modifikovaných asfaltových pásov po 4 mm . Na asfaltové pásy bude ešte pridaná ochranná vrstva proti mechanickému poškodeniu vo forme bentonitovej rohože silnej $6,4 \mathrm{~mm}$ s hutnostou $4000 \mathrm{~g} / \mathrm{m}^{2}$ ktorá zvýši odolnost' voči tlakovej vode. Ked'že je v híbke základovej spáry nestabilné podložie, musia byt' základy opatrené mikropilotami. Od vedl'ajších objektov sú základová doska a ostatné monolitické konštrukcie v podzemí oddilatované a utesnené pomocou PVC-P waterstop dilatačných pásikov.

B.2.3.2 Zaistenie stavebnej jamy

Pred započatím výkopových prác sa do priestoru vnútrobloku navozí všetko potrebné zariadenie staveniska podl'a situácie staveniska (E.2.2). Po zameraní staveniska sa záporovým pažením zaistí spojitá stavebná jama, ktorá bude prebiehat' po obvode celého bloku. Šírka stavebnej jamy je $18,25 \mathrm{~m}$. Záporové paženie bude zložené z drevených pažín a ocelových profilov HEB180 dížy 12m, ktore sa spustia do predvrtanych otvorov s betonovou zálievkou pre stabilizáciu. Paženie je zaistené pomocou horninových kotiev so zapustenou hlavou. Horninové kotvy sú umiestnené vždy nad podlahou, aby z nich bolo možné počas výstavby vypustit' napätie. Záporové paženie ostáva trvalou súčastoou konštrukcie spodnej stavby. Po výkope jamy sa na paženie nanesie vrstva striekaného betónu, na ktorý sa bude realizovat' asfaltová hydroizolácia.

Konštrukcia spodnej stavby je navrhnutá z vodostavebného betonu triedy C30/37 XC2 kvôli spodnej tlakovej vode, je však dodatočne chránená systémom čiernej vane. Na podkladný betón základovej dosky bude nanesený asfaltový penetračný náter a celoplošne teplom natavená hydroizolácia z dvoch modifikovaných asfaltových pásov po 4 mm . Na asfaltové pásy bude ešte pridaná ochranná vrstva proti mechanickému poškodeniu vo forme bentonitovej rohože silnej $6,4 \mathrm{~mm}$ s hutnostou $4000 \mathrm{~g} / \mathrm{m}^{2}$, ktorá zvýši odolnost' voči tlakovej vode. Od vedl'a jsich objektov, sú základová doska a ostatne monolitické konštrukcie v podzemí oddilatovane a utesnené pomocou PVC-P waterstop dilatačných pásikov. Zvislá hydroizolácia bude nanesená na vrstvu striekaného betónu na záporovom pažení. Hydroizolácia je vytiahnutá min. 300 mm na sokel budovy, v miestach kde sa nachádzajú vstupy do objektu je ukončená a mechanicky prichytená na rámoch dverí.
B.2.3.4

Horizontálne konštrukcie

Všetky horizontálne konštrukcie budú zhotovené na mieste stavby z monolitického železobetónu triedy $\mathrm{C} 45 / 55 \mathrm{~s}$ výztužou z oceli B 500 . Monolitické stropné dosky sú navrhnuté o sile 200 mm , v nadzemných podlažiach sú väčšinou pnuté obojsmerne do skrytých prievlakov s prierezom $200 \times 650 \mathrm{~mm}$ ci priznaných prievlakov s prierezom $600 \times 250 \mathrm{~mm}$, v podzemných podlažiach sú dosky pnuté zväčša jednosmerne do priznaných prievlakov

B.2.3.5 Vertikálne konštrukcie

Nosné vertikálne konštrukcie budú zhotovené na mieste stavby z monolitického železobetónu triedy C45/55 s výztužou z oceli B500. Obvodové steny sú kombinované z železobetónu o sile 250 mm a plynosilikátových tvárnic s drážkou s rozmermi $250 \times 500 \times 250 \mathrm{~mm}$, ktoré v tomto prípade nebudú spíňat' nosnú funkciu. Štítové steny sú vyrobené zo železobetónu o sile 250 mm a od vedl'ajších objektov sú oddelené 50 mm hrubými doskami z minerálnej vlny Vnútorné nosné steny sú rovnako z 250 mm hrubého železobetónu, medzibytové priečky sú z plynosilikatovych tvarnic na drázku s rozmermi $250 \times 500 \times 250 \mathrm{~mm}$. Priečky v bytoch sú vyrobené z plynosilikátových tvárnic na drážku s rozmermi $125 \times 500 \times 250 \mathrm{~mm}$

B.2.3.6

Schodiská
V objekte sa nachádzajú celkom tri rôzne schodiská. V každej únikovej ceste sa nachádza jedno schodisko z prefabrikovaného železobetónu. Schodiskové rameno je pevne spojené s hornou aj dolnou podestou a osadené na ozub. V únikovej ceste 1-A.N1/N7 je šírka schodiskového ramena 1200 mm , šírka podesty 1800 mm a šírka medzipodesty 1600 mm . Híbka stupňov je tu 275 mm a výška 173 mm . V únikovej ceste $2-\mathrm{A} . \mathrm{P} 3 / \mathrm{N} 1$ sú tieto parametre prakticky identické s rozdielom šírky podest a medzipodest, ktoré tu sú iba 1200 mm . Tretie schodisko vedie do mezaninu v nebytovom priestore N1.2.01 a je prefabrikovane z ocelovych dielov, s možnostou demontáže. Toto schodisko je široké 1100 mm s hĺbkou stupňa 275 mm a výškou stupňa 159 mm .

B.2.3.7 Šachty

Inštalačné šachty v objekte sú navrhované ako samostatné požiarne úseky, tzn. sú od ostatných priestorov oddelené požiarne deliacou konštrukciou (priečka z pórobetónových tvaroviek o hrúbke 125 mm). Všetky inštalačné šachty sú vyvedené nad strechu objektu, kde sú zaizolované tepelnou izoláciou z extrudovaného polystyrénu a prekryté plechovou strieškou. Výtahová šachta je navrhnutá s vnútornou nosnou stenou z monolitického železobetónu hrubého 200 mm a v nadzemných podlažiach aj vonkajšou stenou z pórobetónových tvaroviek hrubých 250 mm s akustickou vrstvou z minerálnej vlny medzi týmito dvoma stenami

Podlahy v objekte sú navrhnuté s adekvátnou nášlapnou vrstvou pre typ prevádzky miestnosti, kde sa daná podlaha nachádza. Všetky podlahy v nadzemných podlažiach obsahujú vo svojej skladbe akustickú izoláciu z podlahového polystyrénu a roznášaciu (plávajúcu) vrstvu z betónovej mazaniny C20/25, vyztuženú kari sietou KA16 s priemerom prútov 4 mm a okom $100 \times 100 \mathrm{~mm}$. V prípade podlahy v kúpelniach bytov a podlahy v spa a v posilňovni, je v skladbe podlahy zahrnutá systémová doska podlahového kúrenia. V obytných miestnostiach bytov je ako náslapná vrstva navrhnutá laminatová podlaha so vzorom prírodného dreva a drevenými soklovými lištami. Vo vstupe, chodbách, hale a na podestách schodiska je navrhnutá podlaha zo spekanej dlažby s čiernobielym vzorom, so soklom obloženým rovnakou dlažbou. V nebytových priestoroch v 1NP je navrhnutá nášlapná vrstva z lepených PVC dlaždíc s dlhou životnostou. Na steny naväzuje hliníkovou soklovou lištou. V podzemných podlažiach je ako naślapná vrstva navrhnutá epoxidová stierka nanesená na samonivelaćnú cementovú hmotu vyztuženú armovacou tkaninou s okom $4 \times 4 \mathrm{~mm}$. Toto súvrstvie sa aplikuje priamo na nosnú vrstvu zo železobetónu. Podlaha v pivniciach bude pred aplikáciou nášlapnej vrstvy dorovnaná klinmi z expandovaného polystyrénu prekrytými betónovou mazaninou. Podlaha medzi 1PP a 1NP je dodatočne tepelne zaizolovaná na svojej spodnej strane izolačnými doskami z EPS granulátu a cementu, ktoré zároveñ zvyšuju požiarnu odolnost' stropnej konštrukcie.

B.2.3.9

Strechy

Vd'aka ustúpenému 7NP má objekt dve úrovne strechy. V 7NP sa jedná o prevádzkové strechy a strecha nad 7NP je navrhnutá extenzívna zelená, jednopláštová s klasickým poradím vrstiev. Spadova vrstva striech je riesena klinmi z tepelnej izolacie - extrudovaneho polystyrénu. Zrážková voda je odvádzaná do strešných vpustí s filtrami nečistôt a následne zvedená PE potrubím daždovej kanalizácie vinštalačných šachtách do podzemnej akumulačnej nádrže s bezpečnostným prepadom na pozemku vo vnútrobloku. Hydroizolácia strechy je riešená pomocou modifikovaných asfaltových pásov v dvoch vrstvách na tepelnej izolácii a jedným poistným asfaltovým pásom medzi izoláciou a nosnou konštrukciou. Asfaltové pasy použité na extenzívnej zelenej streche spľnajú požiadavok na ochranu proti prerastaniu korienkov, je na nich položená nopová fólia s nakašírovanou geotextílou, ktorá spíňa drenážnu funkciu pri odvádzaní prebytočnej vody a jej filtrácii od nečistôt. Dodatočne sú medzi nopovou fóliou a substrátom použité špeciálne vegetačné izolačné dosky z minerálnej vlny pre extenzívne strechy. Pochodzie strechy v 7NP maju náslapnú vrstvu z drevených latí na drevenom rošte na rektifikovatel'ných terčoch s korektorom sklonu, pod ktoré sa podložia $200 \times 200 \mathrm{~mm}$ štvorce z ochrannej geotextílie, určené ako ochrana pred mechanickým poškodením hydroizolácie pod terčom. Na pochodzích strechách je navrhnutá hydroizolácia formou PVC-P fólie. Za strechu sa dá ešte považovat' cca 450 mm široký výbežok podzemných podlaží pod terénom, ktorý je chránený hydroizoláciou z dvoch modifikovaných asfaltových pásov. Hydroizolácia je chránená doskami z extrudovaného polystyrénu pod odkvapovým chodníkom z riečneho kameniva.

B.2.3.10

Balkóny
Nosná konštrukcia balkónov je riešená ako monolitická železobetónová doska votknutá do železobetónu obvodových stien pomocou špeciálnych konzolových nosníkov. Isokorb na prerušenie tepelného mostu. Na nosnú dosku sa nanesie spádová vrstva formou vyztuženej betónovej mazaniny v sklone 1% od fasády. Betónová mazanina bude potretá špeciálnym penetračným náterom pre PMMA hydroizolačnú stierku, ktorá má chránit konštrukciu balkónu proti dažd'ovej vode. Na stierku bude položená dlažba rovnakého vzoru ako je v komunikačných priestoroch budovy. Dlažba bude prilepená cementovým lepidlom so sklovláknitou tkaninou. Balkón bude ukončený odkvapnicou.

V objekte sú navrhnuté celkom štyri lodžie s rozmermi cca $2,4 x 1,65 \mathrm{~m}$ na západnej fasáde objektu. Nosná konštrukcia pod lodžiou je v zásade pokračovanie stropnej dosky, bez akéhokol'vek zníženia. Na nosnú konštrukciu sa osadia spádové kliny z extrudovaného polystyrénu v sklone 1% smerom k zábradliu lodžie. Na kliny sa položí parotesná polyetylénová fólia proti prenikaniu vlhkosti do konštrukcie budovy. Na fóliu sa umiestnia tepelne izolačné dosky z polyisokyanurátu $s \lambda=0,022 \mathrm{v}$ hrúbke 140 mm . Na tepelnej izolácii bude hydroizolačná paropriepustná polypropylénová fólia. Nášlapná vrstva bude z drevených latí na drevenom rošte na rektifikačných terčoch s korektorom sklonu, pod ktoré sa podložia $200 \times 200 \mathrm{~mm}$ štvorce z ochrannej geotextílie, určené ako ochrana pred mechanickým poškodením hydroizolácie pod terčom. Kvôli rozdielu hrúbky skladieb na oboch stranách vchodového okna bude pri vchádzaní a výchádzaní z lodžie nutné prekonat' schod výšky cca 160 mm .

B.2.3.12

Výplne otvorov
V celom objekte sú navrhnuté okná s predsadenou montážou od výrobcu Aluprof typu MB104 s tepelným prestupom celého okna v hodnote $0,53 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, vstupné dvere do objektu a nebytových priestorov sú z rovnakého systému. Rám okien a dverí na fasáde má matný lak antracitovej farby a sklenená výplň je izolačné trojsklo. Vchodové dvere do bytov, ktoré zároveň slúžia ako požiarny uzáver otvoru v požiarnej stene, sú navrhnuté ako ocel'ové bezpečnostné protipožiarne s laminátovým povrchom bielej farby a hliníkovou zárubňou. Dvere na chránených unikových cestách sú navrhnuté presklené s čiernym hliníkovým rámom od výrobcu Aluprof. Interérové dvere sú navrhnuté s voštinovou výplňou a vzorom prírodného dreva, sú osadené do obložkových drevených zárubní. Interiérové dvere vedúce do miestností s odsávaním vzduchu (wc, kúpel'ňa) sú vybavené vetracím prieduchom. Vstupné dvere do objektu sú navrhnuté o šírke 1500 mm s dvoma krídlami (1000 a 500 mm). Vstupné dvere do nebytových priestorov sú jednokrídlové o šírke 1050 mm . Vstupné dvere do bytov majú šírku 900 mm . Výška prahu dverí do exteriéru je 20 mm . Dvere výtahu sú široké 900 mm . Dvere vo vnútri bytov sú siroke 800 mm pre obytne miestnosti a 700 mm pre ostatne miestnosti. Na streche objektu je navrhnutý pevný svetlík od výrobcu Helux s hrubým rozmerom 1350x1350mm. Výlez na strechu je od výrobcu Helux s teleskopickým rebríkom a s rozmerom $900 \times 700 \mathrm{~mm}$.

B.2.3.13 Omietky a obklady

V exteriéri objektu je použitá dvojvrstvová vápennocementová omietka vyztužená armovacou tkaninou s okom $4 x 4 \mathrm{~mm}$ v hrúbke 15 mm . Zložená je z jadrovej paropriepustnej omietky v hrúbke cca 12mm a hydrofobizovanej jemnozrnnej štukovej omietky v hrúbke cca 3 mm . Nanesená je na kontaktný zateplovací systém ETICS tvorený doskami z minerálnej vlny po 200 mm s $\lambda=0,035$. Dosky sú k nosnej konštrukcii prilepené a mechanicky pripevnené 4 fasádnymi tanierovymi hmoždinkami na dosku, 150mm od všetkých rohov dosky. V miestach, kde je na fasáde použitý obklad je pridaná vrchná doska hrubá 40 mm , kotvená hmoždinkami s ocelovým tŕňom. Na tieto vystúpené dosky sa nanesie suchá maltová zmes vyztužená armovacou tkaninou a prilepia sa tu keramické obkladové pásiky. Na východnej fasáde budú použité obkladové pásiky tmavošedej farby s bielym škárovaním a na západnej fasáde vápenocementová omietka. V interiéri je navrhnutá zväčša sádrová omietka v hrúbke 10 mm . V miestnosti N7.3.03 bude kvôli zvýšenej vlhkosti použitá vápenná štuková omietka na vápennocementovej podkladnej omietke. V zdiel'aných komunikačných priestoroch je na stenách nalepený keramický obklad do výšky $1,2 \mathrm{~m}$ so vzorom dubového dreva.

Vonkajšie parapety okien, atikový plech na streche a striešky nad inštalačnými šachtamisú navrhnuté z hliníkového plechu hrúbky 1 mm s matným antracitovým lakom na povrchu farby RAL 7016 alebo matných bielym lakom farby RAL 1013 (ref. tabul'ka D.1.2.23).

B.2.3.15 Zámočnícke výrobky

Pre objekt je navrhnuté zábradlie na objednávku a bude použité v rôznych rozmerových variantách pred fracúzskymi oknami, na balkónoch a lodžiách. Zábradlie bude vyrobené z HPL laminátových dosiek hrúbky 12 mm so strojovo vyrezaným vzorovaním podl'a projektovej dokumentácie. Zábradlie bude kotvené ocelovými šroubami do fasády alebo inej nosnej konštrukcie. Povrch dosiek bude mat farbu RAL 1013.

Stlipiky zábradlia na schodiskách a v medzibytovej hale budú vyrobené z nerezových jaklov s rozmerom $20 \times 20 \times 1 \mathrm{~mm}$ v osovej vzdialenosti 110 mm od seba, kotvených do strany schodiskového ramena alebo podesty. Madlo zábradlia bude vyrobené z moreného a lakovaného dubového dreva prírodnej farby s ochranným náterom a profilom $45 \times 45 \mathrm{~mm}$. Zábradlie v podzemných podlažiach bude mat' hliníkové madlo s matným lakom RAL 7016 a profilom $45 \times 45 \mathrm{~mm}$.
B.2.3.16

Sauna
V 7NP je navrhnutá sauna, ktorá sa bude zhotovovat' na mieste do pripravenej miestnosti z nenosných priečok hrúbky 125 mm . Steny sauny budú vyrobené z dreveného rámu, ktorý sa bude montovat' priamo na tvarovky priečky. Na montáž rámu budú použité late profilu $40 x 60 \mathrm{~mm}$. Ram bude vyplneny dvoma doskami z minerálnej vlny o hrúbke 60 mm , na ktore sa dá hliníková parotesná fólia. Takto opatrený rám sa obloží z vnútornej strany lipovými obkladovými palubkami. Táto skladba platí aj pre strop sauny. Dvere do sauny budú z kaleného šedého skla, osadené do lipového rámu a s lipovou klučkou. Dvere majú rozmer 2000x700mm.

B.2.4 Celkové prevádzkové riešenie

Budova je určená na trvalý pobyt členov družstva a ich rodín. V prízemí sú navrhované dve prenajímatel'né jednotky, ktoré sú uvažované ako majetok družstva. Nájomné bude pripisované na družstevný účet a podl'a družstevného poriadku využívané na výdavky spojené s chodom a údržbou stavby. Dodatočne budú členovia na základe družstevného poriadku platit' "družstevné", ktoré rovnako poslúži ako kapitál na výdavky spojené s chodom a údržbou stavby.

B.2.4.

Odpadové hospodárstvo
Odvoz odpadu z bytového domu je zabezpečený firmou Komwag s.r.o., s ktorou má družstvo uzavretú zmluvu na dobu neurčitú. Nádoby na odpad sú umiestnené v miestnost (N1.05). Dohodnutá frekvencia odvozu odpadu je $2 x$ za týždeň. Počet a objem nádob na komunálny odpad vychádza z následujúceho výpočtu podl'a odporučenia firmy Komwag:

Zdroj odpadu	Počet osôb podl'a PD	Objem/týždeñ	Nádoby
bytový dom	36 0sôb (x281/t)	1008 litrov	3×2401
prenajímané priestory	15×2 osôb (x28l/t)	840 litrov	2x 2401

Zber triedeného odpadu je riešený koordinovane v rámci celého bloku. V bloku sú zriadené tri stanoviská nádob (po 1100l) na triedený odpad, ktoré sú v dochádzkovej vzdialenosti od bytového domu.

Vstupné dvere do objektu sú navrhnuté o šírke 1500 mm s dvoma krídlami (1000 a 500 mm). Rovnako vstupné dvere do prenajímatel'ných jednotiek sú navrhnuté o šírke 1050 mm . Vstupné dvere do bytov majú šírku 900 mm . Výška prahu dverí do exteriéru je 20 mm . Vo vnútrobloku je navrhnuté oplotenie s bránkami šírky 900 mm , od ktorého vedie rampa ku vstupu v sklone 1:12. Výt'ahová kabína má rozmery $1100 \times 1400 \mathrm{~mm}$ a dvere výtahu sú široké 900 mm . Všetky spoločné chodby sú dimenzované, tak aby splnili potrebný manipulačný priestor 1500 mm . V hromadných garážach je na každom poschodí navrhnuté jedno invalidné parkovacie státie o šírke 3500 mm a je umiestnené na rovnom povrchu s priamym prístupom k výtahu bez potreby prekonat' vozovku. Byty v objekte nie sú uvažované ako bezbariérové, ale je možné ich dodatočne upravit' tak, aby splnili dané požiadavky
B.2.6 Bezpečnost' pri užívaní stavby

Bytový dom je navrhnutý tak, aby pri dodržaní pravidiel užívanie nedošlo k akejkol'vek ujme na zdraví jeho obyvatel'ov a iných uživatel'ov.

B.2.7 Zásady požiarnej bezpečnosti a ochrany

Podl'a normy ČSN 730833 je objekt klasifikovaný ako OB2 - budova pre bývanie. Stavba je rozdelená na 55 požiarnych úsekov, z toho 15 úsekov v podzemných podlažiach, 26 v nadzemných podlažiach, 12 šachiet a 2 chránené únikové cesty typu A. Všetky požiarne úseky sú od seba oddelené požiarne deliacimi konštrukciami, ktoré splňajú minimálne parametre požiarnej ochrany na základe jednotlivých stupñov požiarnej bezpečnosti. Všetky bytové jednotky v dome sú považované za samostatné požiarne úseky, rovnako všetky šachty. Špecifické skupiny miestností v 7NP (spa, posilňovňa, upratovanie) sú spojené do samostatných požiarnych úsekov. Pivnice tvoria požiarne úseky po skupinách v množstve 3 miestností. Technické miestnosti, strojovne, a spoločný sklad na bicykle, lyže a kočíky tvoria samostatné požiarne úseky. Prenajímane priestory v 1NP tvoria samostatne požiarne úseky s vlastnými unikovými cestami priamo do exteriéru. Priestory garáže na každom podlaží tvoria samostatný požiarny úsek, ktorý je od naväzujúcich garáží oddelený požiarnymi roletami.

B.2.7.1 Požiarna odolnost' stavebných konštrukcií

Všetky stavebné konštrukcie v objekte spľ́ňajú požiadavky na požiarnu odolnost' v zmysle normy. Uvedená skutočná požiarna odolnost' konštrukcií v objekte je prevzatá z technických listov konkrétnych použitých produktov. Odkazy s požiarnou odolnostou v pôdorysoch požiarno-bezpečnostného riešenia ukazujú minimálnu požadovanú hodnotu pre danú požiarne deliacu konštrukciu na základe stupňov požiarnej bezpečnosti pril'ahlých požiarnych úsekov.
B.2.7.2

Evakuácia

V objekte sú navrhnuté dve chránené únikové cesty typu A s kombinovaným spôsobom vetrania. Obe cesty sú vybavené autonómnym systémom detekcie požiaru, ktorý sa spúšta dymovými čidlami alebo manuálnym požiarnym hlásičom umiestneným na stene pri vstupe do únikovej cesty. Pri aktivácii systému sa automaticky zatvoria všetky dvere, otvoria samočinné okná a spustí sa ventilátor na prívod čerstvého vzduchu. Ďalej sú únikové cesty vybavené núdzovým osvetlením so záložným zdrojom energie pre dobu najmenej 60 minút, a fotoluminiscenčnými tabul'kami vyznačujúcimi smer úniku a polohu požiarnych zariadení. Dvere v únikových cestách sa otvárajú v smere úniku. Dvere na konci únikových ciest sú opatrené únikovým kovaním.

CHÚC 1-A.N1/N7 obsluhuje nadzemné podlažia a do jej spádovej oblasti unikajúcich osôb spadajú obyvatelia jednotlivých bytov. Vzduch do únikovej cesty privádza ventilátor umiestnený na streche vzduchovodným potrubím v šachte Š03-P1/N8-II. cez vetracie mreže umiestnené v najnižšom bode každého podlažia. Vzduch je z únikovej cesty vytláčaný cez samočinne otvárací svetlík v streche. Súčastou tejto chránenej únikovej cesty je vstupná chodba a predsieň v 1NP, kde sa nachádzajú dva východy na vol'né priestranstvo v exteriéri.

CHÚC 2-A.P3/N1 obsluhuje podzemné podlažia. Počet unikajúcich osôb je tu stanovený na základe počtu parkovacích státí. Vzduch do únikovej cesty privádza ventilátor umiestnený v strojovni vzduchotechniky v 1PP. Vzduch je nasávaný z exteriéru cez výduch vo vnútrobloku. Tlačený vzduch uniká v 1NP cez samočinne otváracie okno pri najvyššej podeste schodiska. Táto úniková cesta je zaústená do CHÚC 1-A.N1/N7 v chodbe v 1NP.
B.2.7.4 Zabezpečenie stavby požiarnou vodou

Vonkajšie odberové miesto je riešené ako podzemný hydrant DN100 umiestnený do priestoru chodníka pred čelnou fasádou objektu. Hydrant má bezpečnostnú poistku proti neodbornej manipulácii. Dimenzovanie hydrantu je v súlade s ČSN 730873.

Vnútorné odberové miesta v nadzemných podlažiach sú riešené na každom podlaží hydrantom so sploštitel'nou hadicou o svetlosti DN20 s pracovným tlakom 1,5MPa. Skrinka s hydrantom je umiestnená v N2.5 (hala s prístupom do bytových jednotiek). Najvyššia zásahová vzdialenost od hydrantu na typickom podlazi je 16,9m. V podzemnych podlažiach je hydrant umiestnený na stene CHÚC. Nakol'ko je v hromadných garážach, disponuje tvarovo-stálou hadicou o svetlosti DN25. Všetky hydranty sú umiestnené vo výške $1,2 \mathrm{~m}$ nad podlahou. Celý systém musí byt raz za rok zrevidovaný. Voda do požiarneho vodovodu je čerpaná z nádrže na požiarnu vodu v 3PP.
B.2.7.5

Hasiace pristroje
Do objektu navrhujem osadenie niekol'kých prenosných hasiacich prístrojov (PHP) na základe normy ČSN 73 0833. Do priestorov na prenájom, odpadovej miestnosti, posilňovne a sauny podl'a výpočtu v tabul'ke nižšie, do hromadných garáží na každé podlažie 1x penový PHP s hasiacou schopnostou 183B, do strojovne výtahu 1x CO2 PHP 55B, k hlavnému domovému elektrorozvádzaču 1x práškový PHP 21A a v priestore haly na 7NP tiež 1x práškový PHP 21A. Všetky hasiace prístroje budú osadené vo výške $1,2 \mathrm{~m}$ nad podlahou a budú periodicky kontrolované raz za rok.

B.2.7.6 Požiarno-bezpečnostné zariadenia

V objekte je navrhnuté do vstupu každého bytu zariadenie autonómnej detekcie a signalizácie požiaru s batériou vyhovujúce norme ČSN EN 14604 . V žiadnom byte nie je nutné navrhovat' viac ako jedno takéto zariadenie nakol'ko nepresahujú plochu $150 \mathrm{~m}^{2}$ ani nie sú mezonetové. Dodatočne sú tieto zariadenia navrhnuté v prenajímatel'ných priestoroch a v miestnosti na odpadky.

Obe chránené únikové cesty v objekte sú rovnako vybavené autonómnym systémom detekcie požiaru, ktorý sa spúšta dymovými čidlami alebo manuálnym požiarnym hlásičom umiestneným na stene pri vstupe do únikovej cesty. Pri aktivácii systému sa automaticky zatvoria všetky dvere, otvoria samočinné okná a spustí sa ventilátor na prívod čerstvého vzduchu.

Okrem toho bude v CHÚC nainštalované núdzové osvetlenie so záložným zdrojom energie, a to nad každou podestou a medzipodestou schodiska. Minimálna doba, po ktorú osvetlenie musí fungovat' je 60 minút podl'a poziadavky normy CSN EN 1838. V miestach, kde sa unikove cesty začínajú, menia smer či výškovú úroveň alebo sa spájajú, budú osadené fotoluminiscenčné tabul'ky podl'a normy ČSN ISO 3864.

B.2.7.7 Hasenie požiaru a záchranné práce

Nástupné plochy budú navrhnuté na základe ČSN 730802 a dohode s dotknutým HSZ. Hasiči budú v prípade požiaru zasahovat' z ulice na východnej strane objektu, kde bude zvislým dopravným značením vyznačená nástupná plocha v spevnenej a odvodnenej vozovke s minimálnou šírkou 4 m

Vnútorné zásahové cesty v objekte nebudú uvažované, nakol'ko požiarna výška objektu nepresahuje $22,5 \mathrm{~m}$, objekt neobsahuje chránené únikové cesty typu B či C a hromadné garáže nad $200 \mathrm{~m}^{2}$ sú vybavené samočinným sprinklerovým hasiacim zariadením. V prípade protipožiarneho zásahu budú využité vonkajšie zásahové cesty.

Vonkajšie zásahové cesty pre prístup na strechu objektu rieši výlez s teleskopickým rebríkom umiestnený v chránenej unikovej ceste končiacej v 7NP. V návrhu sa neuvažuje s použitím požiarnej lávky, ked'že strecha vyhovuje požiadavkam na zásah.

B.2.8 Technické zariadenie budovy

B.2.8.1 Vodovod

Vodovodná prípojka (SOO3a) je napojená na verejný vodovodný rad vedený ulicou na východnej strane objektu v híbke $1,5 \mathrm{~m}$ pod povrchom. Svetlost' prípojky je navrhnutá DN80 na základe výpočtu a bilancie potreby vody a prítomnosti samočinných hasiacich zariadení. Prípojka je dlha $16,5 \mathrm{~m}$ a na rad je napojená odbocovacou tvarovkou. Pripojka je z polyetylenoveho potrubia. Prípojka vchádza do objektu v híbke $1,0 \mathrm{~m}$ pod povrchom cez prestupovú tesniacu pažnicu. V miestnosti P 1.02 sa nachádza centrálna vodomerná zostava cca 2 m od prestupu.

B.2.8.1.1 Bilancia spotreby vody

Podl'a vyhlášky č. 428/2001 Sb. je špecifická spotreba vody pre bytové stavby s centrálnou prípravou teplej vody 100 litrov na osobu za deň. V objekte je podl'a projektovej dokumentácie 84 osôb, čiže denná spotreba vychádza na 8400 litrov za deň. Po prepočte na hodinovú spotrebu pomocou súčinitel'ov nerovnomernosti, kde kd pre rok 2023 vychádza 1,3 a kh pre sústredenú zástavbu je 2,1, dostaneme minimálnu svetlost' potrubia vodovodnej prípojky DN15. Tento poziadavok je však prebity minimálnou dimenziou prípojky pre budovy so samočinnymi hasiacimi zariadeniami (v hromadných garážach je navrhnutý systém sprinklerov), kde norma diktuje DN80.

B.2.8.1.2

Ohrev teplej vody
Návrh a výpočet ohrievania teplej vody je spravený na základe metódy, ktorá je uvedená v ČSN EN 15316-3-1, 2, 3. Špecifická spotreba teplej vody na obyvatel'a bytového domu je podl'a tejto normy 40 l/deň. Na základe výpočtu nižšie sú do objektu navrhnuté dva stojaté zásobníky s bivalentným zdrojom pre ohrev teplej vody s objemom 1400 l (s príkonom 18 kW) a 20001 (s príkonom 22,5kW), umiestnené v miestnosti P2.02. Pre prenajímatel'né priestory navrhujem inštaláciu prietokových ohrievačov vody, a teda nebudú vyžadovat' vlastné zásobníky na teplú vodu.

Vodovodná prípojka vchádza do budovy prestupom v stene 1PP, kde odbáča do technickej miestnosti (kód P1.02), v ktorej je umiestnený hlavný uzáver vody a hlavná vodomerná zostava. V tejto miestnosti dochádza k deleniu vodovodného potrubia na rozvody studenej vody pre byty, teplej vody cez zásobníky a požiarneho vodovodu. Potrubia s teplou a cirkulačnou vodou sú v 1PP opatrené rukávom z tepelnej izolácie. Všetky potrubia v 1PP sú vedené vol'ne pod stropom a do nadzemných podlaží pokračujú cez inštalačné šachty. V kúpel'niach a kuchyniach každého bytu sú umiestnené vedl'ajšie vodomery pre daný byt. Potrubia s vodou v bytoch a nebytových priestoroch sú vedené výhradne drážkami v predstenách.

B.2.8.1.4 Požiarny vodovod

Požiarnym vodovodom je napojený požiarny hydrant v každom nadzemnom podlaží so sploštitel'nou hadicou o svetlosti DN20 s pracovným tlakom 1,5MPa. Skrinka s hydrantom je umiestnená v N2.5 (hala s prístupom do bytových jednotiek). V podzemných podlažiach je hydrant umiestnený na stene CHÚC. Nakol'ko je v hromadných garážach, disponuje tvarovostálou hadicou o svetlosti DN25. Okrem toho je v hromadných garážiach nainštalované samočinné hasiace zariadenie (sprinklery). Požiarny vodovod je napájaný na záložný zdroj požiarnej vody, ktorým je nádrž v miestnosti P2.02 v 3PP.

B.2.8.2 Splašková kanalizácia

Kanalizačná prípojka (SOO3b) je napojená na verejnú kanalizačnú stoku vedenú ulicou na východnej strane objektu v híbke $1,5 \mathrm{~m}$ pod povrchom. Prípojka je v sklone 2% smerom k stoke a má navrhnutý prierez DN150. Nižšie priložená tabul'ka kompiluje počty všetkých zariad'ovacích predmetov napojených na systém splaškovej kanalizácie.

V nadzemných podlažiach budovy sú potrubia vedené cez prísteny, prípadne podhl'adom v 1NP a to so sklonom minimálne 3%. V objekte sa nachádza celkom 9 (11) zvislých potrubí, ktoré sa pod stropom 1PP zbiehajú do jedného potrubia s DN150. V miestach, kde potrubia menia smer budú nainštalované čistiace tvarovky

B.2.8.3

Daždoová kanalizácia
Prípojka dažd’ovej kanalizácie (SOO3e) je napojená na akumulačnú nádrž (ktorá je súčastou stavebného objektu prípojky) s objemom 2000 litrov na západnej strane bytového domu, určenú pre závlahu intenzívnej zelene na pozemku investora. Samonosná akumulačná nádrž s pôdorysnými rozmermi $1,2 \times 2,2 \mathrm{~m}$ a výškou 1 meter je založená na betónovom základe hrúbky 150 mm , a to v híbke 1,45 metra pod úrovňou upraveného terénu, tak aby zásyp nad nádržou nepresiahol 30 cm podl'a požiadavku výrobcu. Nádrž je vyrobená z polypropylénu. Nádrž má bezpečnostný prepad s DN100, ktorým sa napája na systém retenčných nádrží mimo pozemku investora v priestore vnútrobloku. Pre koordinátora vnútrobloku odporúčam počítat's objemom 2700 litrov do vsakovacieho objektu pre budovu E podl'a koordinácie bloku.

Strechy objektu sú odvodnené pomocou systému strešných vpustí napojených na zvody vedené inštalačnými šachtami do 1PP, kde sa pod stropom spájajú do prípojky dimenzovanej DN 100. Balkóny a lodžie v objekte nie sú napojené na systém dažd'ovej kanalizácie - sú odvodnené pomocou chrličov a odkvapníc

Bytový dom je v rámci koordinácie bloku napojený na výmenníkovú stanicu tepla, ktorá je umiestnená v 2PP objektu B na severe bloku. Zdroj tepla pre výmenníkovú stanicu je teplovod, ktorého médium je para. Prípojka na výmeníkovú stanicu je vedená pod stropom $2 P P$, je vyrobená z pozinkovanej ocele s tepelnou izoláciou z minerálnej vlny a ústi do akumulačnej nádrže s nerezovým výmenníkom v miestnosti P2.02. Z 2PP je vedený hlavný rozvod cez prestup v strope miestnosti P2.02 do miestnosti P2.01, kde sa nachádza rozdel'ovač. Ten delí rozvod na 9 menších, ktoré sú vedené vol'ne pod stropom 1PP do inštalačných šachiet. Dalšie rozdel'ovače sa nachádzajú v šachtách v bytoch, kde delia rozvod pre podlahové kúrenie a radiátory. Podlahové kúrenie je navrhnuté zo systémových nopových dosiek s plastovými hadičkami prekrytými betónovou mazaninou s roznášacou kari siet'ou (skladba P14). Pod okná sú navrhnuté doskové radiátory s šírkou 100 mm . V družstevnom byte v 7NP je osadený podlahový konvektor
B.2.8.5 Úspora energie a tepelná ochrana

Riešený objekt má obvodové steny navrhnuté s kontaktným zateplovacím systémom ETICS s izolačnými doskami z minerálnej vlny. Budova má dva hlavné typy obvodovej steny zohl'adnené vo výpočte tepelných strát, jedna varianta je s vápennocementovou omietkou na 200 mm izolácie, druhá varianta je obklad keramickými pásikmy na 240 mm izolácie. Strecha objektu je navrhnutá plochá s extenzívnou zeleňou s tepelnou izoláciou hrubou 250 mm z expandovaného polystyrénu. V celom objekte sú navrhnuté okná od výrobcu Aluprof typu MB104 s tepelným prestupom celého okna v hodnote $0,53 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, vstupné dvere sú z rovnakého systému.

B.2.8.6 Chladenie

V bytovom dome nie je navrhnutý žiadny špeciálny systém chladenia. Na ochranu pred solárnymi tepelnými ziskami slúžia tieniace rolety inštalované nad väčšinou okien s výnimkou okien pri balkónoch, kde túto funkciu preberá vysúvacia markíza. V 7NP je na terase navrhnutá pergola s nastavitel'nými tieniacimi doskami. Všetky tieniace prvky sa ovládajú elektricky pomocou vypínačov osadených na stenách v ich blízkosti.

B.2.8.7 Vetranie

B.2.8.7.1 Prirodzene vetranie

Obytné miestnosti v bytoch sú vetrané prirodzene pomocou okien, ktoré sa dajú otvorit' na štrbinové vetranie, vetranie vetračkou a celým oknom. Dvere do kúpel'ní a záchodov majú v spodnej časti vetraciu mriežku pre umožnenie prúdenia vzduchu smerom do miestnosti.

B.2.8.7.1 Nútené vetranie

Pre nútený prívod a odvod vzduchu v objekte sú navrhnutých 5 vzduchotechnických jednotiek s rôznymi parametrami na základe ich špecifického účel'u. Okrem toho je v šachtách navrhnutých 5 potrubí s ventilárom pre odsávanie vzduchu z kúpel'ní, záchodov a priestorov sauny.

V kúpel'niach a záchodoch v bytoch a v priestoroch sauny v 7NP sú navrhnuté ventilátory, ktoré odsávajú znečistený vzduch potrubím v inštalačnej šachte nad strechu budovy, a 4 potrubia s ventilátorom na odsávanie vzduchu z digestorov s lapačom tuku. Prívodné potrubia digestorov sú dimenzované s DN150 mm. V zvislých potrubiach je do výpočtov uvažovaná rýchlost' prúdenia vzduchu 5 metrov za sekundu. Prietok vzduchu na 1 kúpel'ňu je $50 \mathrm{~m}^{3} / \mathrm{h}$ a na 1 záchod $25 \mathrm{~m}^{3} / \mathrm{h}$.

Obidve chránené únikové cesty v budove majú navrhnutú svoju vlastnú vzduchotechnickú jednotku. Obe únikové cesty sú CHÚC typu A s kombinovaným spôsobom odvetrania, pričom čerstvý vzduch je umelo privádzaný a znečistený vzduch je ním tlačený cez samočinne otváravé okná. Pre takýto systém je z požiarneho hladiska nutné počítat's 10 -násobnou výmenou vzduchu v priestore za hodinu. V zvislých potrubiach je do výpočtov uvažovaná rýchlost' prúdenia vzduchu 10 metrov za sekundu.

Pre CHÚC 1-A.N1/N7 je prívod vzduchu zabezpečený vzduchotechnickou jednotkou Duplex umiestnenou na streche budovy, kde je čistý vzduch priamo nasávaný. Do budovy je vedený smerom dolu inštalačnou šachtou s vetracími otvormi v úrovni podlahy. Znečistený vzduch odchádza cez samočinné okno a samočinné dvere v 7NP.

Pre CHÚC 2-A.P3/N1 je prívod vzduchu zabezpečený vzduchotechnickou jednotkou Duplex umiestnenou v miestnosti P1.03. Cistý vzduch je nasávaný na fasáde pod parapetom okna do vnútrobloku v 1NP a k vzduchotechnickej jednotke je vedený priznaným potrubím na stene schodiska. Do priestoru schodiska je tlačený cez vetracie otvory pri vstupných dverách nad úrovňou podlahy.

Pre odvetranie hromadných garáží je navrhnutá vzduchotechnická jednotka s rekuperačným výmenníkom Duplex umiestnená v miestnosti P2.03. Čerstvý vzduch pre tento systém je nasávaný na fasáde pod parapetom okna do vnútrobloku v 1NP a k vzduchotechnickej jednotke je vedený priznaným potrubím na stene schodiska vedl'a potrubia pre CHÚC 2-A.P3/N1. V priestoroch garáže sú pod stropom vedené potrubia s mrežami pre prívod čerstvého vzduchu a potrubia pre odsatie znečisteného vzduchu. Znečistený vzduch je po rekuperácii odvedený na strechu objektu v sachte vedl'a potrubia pre CHUC 1-A.N1/N7. Vzduchotechnika pre hromadne garáže je dimenzovaná na základe počtu parkovacích státí, kde na jeden automobil pripadá nutný prietok vzduchu $150 \mathrm{~m}^{3} / \mathrm{h}$.

Pre odvetranie prenajímatel'ných priestorov je vyhradený priestor pre kompaktné vzduchotechnické jednotky zabudovatel'né do podhl'ahu. Odvetranie a nasávanie týchto jednotiek bude prebiehat' výduchmi na fasáde. Ich návrh nie je súčastou návrhu budovy, nakol'ko kúpa a výber vzduchotechnickej jednotky bude závisiet' na druhu prevádzky nájomníka.

B.2.8.8

Elektricke rozvody
Dom je napojený prípojkou na verejný silnoprúd vedený v ulici na východnej strane budovy. Prípojková skrinka je umiestnená v závetrí pod zvončekmi pri hlavnom vchode do objektu. Odtial' je vedený kábel do hlavného domového rozvádzača, ktorý je umiestnený oproti výtahu v 1NP, na ktorý sú napojené podlažné rozvádzače. Podlažné rozvádzače sú prístupné z haly a sú na ne pripojené bytové rozvádzače s poistkami umiestnené na stene pri vstupných dverach do bytu. V podzemnych podlaziach su elektrorozvody vedene pod stropom v zlaboch. V miestnosti P3.02 je umiestnený záložný zdroj energie a riadiaca jednotka výťahu. Podlažné rozvádzače v podzemných podlažiach sú umiestnené na stene pri výťahu. Celý objekt je chránený proti blesku vonkajšími hromozvodmi, ktoré sú uzemnené na dvoch miestach vo vnútrobloku. Vnútorné rozvody sú chránené ekvipotenciálnym systémom. Zásuvkové obvody sú istené 16A poistkami a majú maximálne 10 vývodov. Pre práčky, umývačky riadu a vzduchotechnické jednotky sú navrhnuté samostatné jednofázové obvody. Rúry na pečenie sú napojené na samostatné trojfázové obvody. Elektrorozvody pre umelé osvetlenie sú istené 10A poistkami a majú maximálne 10 vývodov. Jednotlivé svietidlá sa ovládajú pomocou vypínačov na stenách vo výške $1,3 \mathrm{~m}$ a 15 cm od rámu dverí. Zásuvky pre elektrospotrebiče v obytných miestnostiach sú umiestnené na stenách vo výške $0,3 \mathrm{~m}$, v kúpel'niach vo výške $1,3 \mathrm{~m}$ so zvýšenou odolnost'ou proti vlhkosti. V 7NP sú zásuvky aj v exteriéri a sú chránené plastovou krytkou.

Objekt má navrhnutú extenzívnu vegetačnú strechu, ktorá prispieva k jemnejšej letnej klíme v oblasti. Zachytená dažd’ová voda je akumulovaná v podzemnej nádrži a využívaná k závlahe intenzívnej zelene. Ochrana životného prostredia je bližšie popísaná v kapitole XXX.

B.2.10

Ochrana pred negatívnymi účinkami prostredia
Budova je chránená proti radónu pomocou modifikovaných asfaltových pásov natavených na celej ploche spodnej stavby. Tieto pásy slúžia ako zároveň ako hydroizolácia spodnej stavby. Spodná stavba je vystavená negatívnym účinkom tlakovej vody, ktoré sú kompenzované statickým votknutím pomocou hĺbkových pilôt do podložia. Zvislé konštrukcie spodnej stavby sú navrhnuté tak, aby odolali tlaku vody. Strecha objektu má navrhnutú hydroizoláciu z modifikovaných asfaltových pásov. Tepelné zisky od priameho slnečného žiarenia sú redukované pomocou extenzívnej zelene a v bytoch pomocou vonkajších tieniacich zariadení - roliet, markíz alebo pergoly. Obálka budovy má energetický štítok A - mimoriadne úsporná.

B.2.11

Dopravné riešenie
Doprava v klude je riešená koordinovane, a to spoločnými hromadnými garážami v podzemných podlažiach, ktoré obiehajú celý blok (ref. výkres C.4). Vjazd a výjazd z hromadných garáží je na severe bloku (ref. výkres C.1). V podzemných podlažiach objektu je navrhnutých 36 parkovacích státí z toho 3 státia pre osoby s obmedzenou možnostou pohybu. Šírka parkovacích státí pri pevnej prekážke je 2750 mm , bez prekážok 2500 mm a pri státiach pre invalidov 3500 mm . Dižka parkovacích státí je 5 m . V garáži je obojsmerná premávka po vozovke širokej 6 m - teda $2 \times 3 \mathrm{~m}$ pruh. Z výpočtu v kapitole D.1.1.8 vyplýva, že je nutné zaistit' 14 odstavných a 6 parkovacích státí. V rádiuse 50 m od parteru domu je podl'a územnej štúdie zaistených 10 verejných pozdížnych parkovacích státí. Tieto státia môžu slúžit' ako návštevnícke. Priestory na prenájom majú zaistených 6 parkovacích státí v hromadných garážach v 3PP.
B.2.12

Terénne úpravy
Terénne úpravy vzhl’adom na pôvodný stav budú minimálne, keď̌̌e táto plocha už bola terénne upravená pred začatím výstavby. Počas stavby však dojde k vykopaniu obrovského objemu zeminy. Po dokončení hrubej stavby sa môžu začat' realizovat' oporné steny na pozemku, ktoré budú doplnené sadovými úpravami. Počas týchto úprav bude umiestnená na pozemku podzemná akumulačná nádrž na dažd'ovú vodu a závlahové rozvody. Na pozemku sa počíta s výsadbou 3 listnatých stromov malého vzrastu. Pri oplotení pozemku bude vysadená rada tují, ktoré po čase vytvoria živý plot pre zvýšenie súkromia na pozemku investora.

B.3.1 Základná charakteristika staveniska

Stavenisko sa nachádza v oblasti, v ktorej bude prebiehat' development v mierke cele štvrti, takže počas výstavby nebudú v tesnej blízkosti žiadne obývané budovy. Do priestoru staveniska zasahuje niekol'ko existujúcich objektov, ktoré bude pred začatím výstavby nutné zdemolovat. Stavenisko bude koordinované pre celý blok, ktorého súčastou je riešený stavebný objekt E (SO 02 podl'a projektovej dokumentácie). Prístup na stavenisko bude zabezpečený novou cestnou komunikáciou podl'a územnej štúdie Nové Dvory

B.3.2 Majetkoprávne riešenie

Výstavbe nového developmentu územia predchádza úprava súčasnej katastrálnej situácie a vyriešenie nových majetkových pomerov medzi pôvodnými vlastníkmi a sprostredkovatel'om HI. mestom Praha. Takže v čase dokončenia sa stavba nachádza výhradne na pozemkoch v majetku investora (družstva). Pri realizácii stavby však dôjde k dočasnému záboru na pozemku vo vlastníctve hl. m. Praha, na ktorom je navrhnutá komunikácia a prístup vozidiel k stavenisku. Zariadenie staveniska sa umiestní do priestoru vnútrobloku, ktorý je pozemkovo delený medzi jednotlivé parcely bloku a verejný priestor v majetku mesta.

B.3.3 Zoznam stavebných a búraných objektov

SO 01
SO
SO 02
SO 03
SO
SO 03a
SO 03b
SO 03b
SO 03c
SO 03d
SO 03e
SO 03f

Hrubé terénne úpravy	BO 01	Tenisové kurty - sever
Bytový dom	BO 02	Tenisové kurty - juh
Prípojky	BO 03	Tenisové kurty - západ
	BO 04	Asfaltové parkovisko

SO 04 Spevnené plochy
SO 05 Oporné steny

$$
\begin{array}{ll}
\text { SO 05a } & \text { Oporná stena - sever } \\
\text { SO 05b } & \text { Oporná stena - juh }
\end{array}
$$

Čisté terénne úpravy

B.3.4 Zásobovanie stavby stavebným materiálom

Stavba bude zásobovaná čerstvým betónom, dovezeným z najbližšej betonárne vzdialenej $5,1 \mathrm{~km}$ od staveniska. Zvolená betonáreň (Zapa Beton, a.s.) sa nachádza na adrese Vídeňská 495, 14200 Praha - Písnice, odkial' bude betón dovážaný v priebehu 10-15 min. autodomiešavačmi, ktoré zabezpečuje betonáreň.

Pre presun a prácu s betónom na stavenisku je zabezpečená bádia na betón s rukávom, od dodávatel'a stavo-shop.cz, s objemom $0,5 \mathrm{~m}^{3}$ a vlastnou hmotnostou 115 kg . V naplnenom stave bude bádia vážit' 1365 kg . Rozmery bádie sú $1,25 \times 1,05 \times 0,88 \times 1,2 \mathrm{~m}$.

B.3.5 Postup výstavby

Výstavba začne po dokončení prípravy územia, ked' TSK zrealizuje prístupové komunikácie. V tejto fáze dojde k demolícii súčasných objektov a vyty̌čeniu nových parcel na základ platného územného plánu

Samotná stavba bytového domu je rozdelená na dve etapy. Prvá etapa je koordinovaná výstavba podzemných podlaží, ktoré sú spojené po obvode celého bloku. Pred začatím výkopových prác sa navozi zariadenie staveniska do priestoru vnutrobloku, pripravia sa sociálne zariadenia, prípojky pre stavenisko a stavebný žeriav. V d'alšom kroku sa spravia vrty pre nosné profily záporového paženia a odčerpávacie studne po obvode budúcej stavebnej jamy Až ked' sa v tomto zmysle pripraví celý obvod bloku, začnú sa výkopové práce. Paženie sa bude postupne zaistovat' pomocou horninových kotiev v štyroch výškových úrovniach, vždy nad podlahou budúcich podlazí. Po dosiahnutí základovej spary sa začnú realizovat vrty pre mikropiloty, ktoré sa votknú do únosného podložia. Po osadení mikropilôt sa zrealizuje podkladný betón, na ktorý sa bude neskôr nanášat' hydroizolačné súvrstvie. Podobný proces prebehne aj na stenách stavebnej jamy, kde sa aplikuje striekaný betón na konštrukciu záporového paženia. Po dokončení asfaltovej hydroizolácie na spomínaných betónových konštrukciách sa na ňu položia bentonitové rohože. Nasleduje realizácia základovej dosky a podzemných stien z vodostavebného betónu. Po technologickej prestávke sa doplnia prefabrikované schodiskové ramená a výtahová šachta, ktorá je od zvyšku monolitických konštrukcií oddilatovaná. Pri dokončení jednotlivých podzemných podlaží sa musí uvolnit́ napätie z horninových kotiev v danej úrovni. Pri dokončovaní IPP sa domy napoja na prípojky. V tejto fáze sa zrealizujú prevádzkové strechy nad dvoma úsekmi podzemných podlaží na severovýchode a juhozápade bloku

V tomto momente končí koordinovaná etapa a začne etapa výstavby hrubej stavby nadzemných podlaží samostatných stavebných objektov. Po dokončení strechy objektu sa začnú realizovat' hrubé vnútorné konštrukcie a súčasne s tým montáž okien, dverí a zateplovanie fasády a úprava povrchu fasády. Iná skupina robotnikov môze súbeżne realizovat oporne steny a spevnené plochy na pozemku, pričom tu dojde aj k osadeniu akumulačnej nádrže a jej napojenie na prípojku dažd'ovej kanalizácie. Na záver prídu dokončovacie konštrukcie, osadzovanie sanity a čisté terénne úpravy. Po demontáži zariadenia staveniska, žeriavu a záborov, prebehne oprava a čistenie verejných komunikácií znehodnotených počas výstavby. V priestore vnútrobloku prebehnú koordinované sadove úpravy, okrem iného aj realizácia retenčnych nádrzí a vsakovacích objektov.

B.3.6 Návrh debnenia

Na vodorovné konštrukcie bude použitý trojdielny systém SKYDECK od výrobcu PERI. Systém tvoria dosky, nosníky a stojiny skladované v paletách podla odporúcaní výrobcu. Použité dosky SKYDECK majú rozmery $1500 \times 750 \mathrm{~mm}$, stojiny sú teleskopické a pri montovaní debnenia budú nastavené na požadovanú výšku betónovaného stropu. Podl'a výpočtu bude na dva zábery vodorovnej betonáže nutné použit 317 ks dosiek a 104 stojín a nosníkov. Na okraji betónovanej dosky budú použité lávky proti pádu SKYDECK, ktoré sa osadia na presah nosníka.

Na zvislé konštrukcie bude použitý systém LIWA od výrobcu PERI s doskami troch rôznych rozmerov ($500,1000,1500 \mathrm{~mm}$). Dosky LIWA majú jednotnú hrúbku 250 mm a kvôli bezpečnosti pri manipulácii je ich možné skladovat' maximálne do výšky $1,5 \mathrm{~m}$.

B.3.7 Návrh žeriavu

Na stavenisku bude zmontovaný samostavitel'ný žeriav od výrobcu Liebherr, model 71K s vyložením 37 m a výškou $39,1 \mathrm{~m}$. Nosnost žeriavu na vzdialenost 35 m je 1920kg. Podstava žeriavu s rozmermi $4,5 \times 4,5 \mathrm{~m}$ je vzdialená 4 m od hrany stavebnej jamy, $4,15 \mathrm{~m} \mathrm{k}$ najbliž̌̌ej hrane fasády. Návrh počíta s hmotnostnou aj vzdialenostnou rezervou.

B.3.8 Návrh zaistenia a odvodnenia stavebnej jamy

Návrh stavebnej jamy musí rešpektovat́ zistenia z hydrogeologického prieskumu (archívny vrt od Českej geologickej služby), ktoré hovoria, že hladina podzemnej vody bola narazená v híbke cca 8 metrov (295,900 m.n.m.b.p.v). Základová spára sa nachádza v híbke 11,5 metra (11,13 až $11,93 \mathrm{~m}$, z dôvodu sklonu nivelety vozovky v podzemných garážach, tzn. 3,1 až $3,9 \mathrm{~m}$ pod hladinou spodnej vody). Kedže je v hibke základovej spáry nestabilné podložie, a to konrétne íl, musia byt' základy opatrené mikropilotami, ktoré ukotvia spodnú stavbu do bridlice narazenej v híbke 12 m . Toto opatrenie slúži aj ako prevencia vyplavenia stavby tlakovou vodou. Zaistenie stavebnej jamy bude riešené pomocou záporového paženia. Ako zápory budú použité valcované profily HEB180, dlhé 12 m , ktoré sa osadia do predvŕtaných jám. Zápory budú fixované do betónových základov. Paženie bude prebiehat po obvode celého bloku. Osová vzdialenost pažníc je $1,2 \mathrm{~m}$. V každom druhom poli budú inštalované horninové kotvy, dlhé $4-1 \mathrm{~m}$, so zapustenou hlavicou. Stavebná jama bude široká $18,25 \mathrm{~m}$. Počas výkopových prác bude hladina podzemnej vody regulovaná pomocou odčerpávacích studní. K tomuto účelu budú zabezpečené kalové čerpadlá. V miestach s nižšou základovou spárou sa odporúča zdvojnásobit počet čerpadiel. Stavebná spára je navrhnutá so strechovitým sklonom cca 1-2\% na strany výkopu do dvojice drenażnych potrubí, ktore sa zaustia do odcerpávacich studni v najniźsich bodoch bloku. Po dokončení spodnej stavby nebude paženie demontované - ostáva trvalou súčastou konštrukcie.

B.3.9 Návrh záborov staveniska

Väčšina staveniska sa rozprestiera v priestore budúceho vnútrobloku, návrh však počíta aj s dočasným záborom do ulice, na pozemku HI. mesta Praha. Dochádza tu k zúženiu cestnej komunikácie zo 6 m na 5 m . Nedôjde k zniženiu cestných pruhov, bude však nutné obmedzit' maximálnu povolenú rýchlost' v tomto úseku. Tento zábor o vel'kosti $6,4 \times 24,5 \mathrm{~m}$ slúži ako vstup na stavenisko, a to aj pre chodcov aj pre vozidlá stavby. Zábor je po celom obvode oplotený stavebným plotom s plachtou proti šíreniu prachu. Na oplotení budú tabul'ky zakazujúce vstup nepovolaných osôb. Je tu navrhnutá vrátnica v dočasnom stavebnom kontajneri od výrobcu ToiToi, okrem toho tu budú umiestnené odpadové nádoby na plasty, kovy, betón, stavebný odpad a nebezpečný odpad. Vozidlám privážajúcim stavebné materiály bude umožnený vjazd do oploteného záboru. V zábore je jednosmerná stavebná komunikácia určená na zastavenie vozidiel a vylozenie alebo nalozenie materialov. Komunikacia usti opat na ulicu za križovatkou. V okolí stavby bude umiestnené dočasné zvislé dopravné značenie informujúce o prebiehajúcej stavbe a vychádzajúcich vozidlách. Hlavný vstup pre peších pracovníkov je takisto cez tento zábor. Pracovníci sa pri príchode na stavbu prihlásia na vrátnici a pomocou stavebného výtahu č. 1 sa dostanú na dno stavebnej jamy. Na opačnej strane jamy je umiestnený stavebný výtah č.2, ktorým sa dostanú do priestoru zariadenia staveniska

B.3.10 Ochrana životného prostredia počas výstavby

Ochrana ovzdušia: je riešená pomocou plachiet proti šíreniu prachu na oplotení staveniska a na fasádnom lešení.

Ochrana podzemných a povrchových vôd: je riešená pomocou nepriepustnej podložky na vymedzenom mieste, kde bude prebiehat čistenie debnenia. Znečistená voda bude zachytená do dočasnej žumpy, ktorá bude v prípade potreby priebežne odčerpávaná a po ukončen stavebných prác zlikvidovaná.

Ochrana pôdy: Odkopaná pôda bude odvážaná na skládku. Jej vrchná ohumusovaná vrstva bude ponechaná a neskôr použitá pri čistých terénnych úpravách.

Ochrana zelene: Na stavenisku sa nenachádzajú žiadne ekologicky významné stromy, len nízke náletové dreviny a trávy, ktoré nebudú pri stavebných prácach chránené ani zachované.

Ochrana pred hlukom a vibráciami: Stavebné práce budú prebiehat' výhradne medzi 6:00 až 22:00, teda mimo nočný klud.

Ochrana pozemných komunikácií: Stavebná technika bude pred opustením stavby očistená a spevnené plochy v okolí stavby budú priebežne čistené vodou.

Riešenie odpadu zo stavby: Na stavenisku sú umiestnené odpadové nádoby na plasty, kovy, betón, stavebný odpad, nebezpečný odpad a komunálny odpad. Tieto nádoby budú priebežne vyprázdňované. Na nebezpečný odpad bude použitá špeciálna nepriepustná nádoba a jeho likvidácia bude zabezpečená špecializovanou firmou.

B.3.11 Bezpečnost' a ochrana zdravia pri práci

Podl'a § 14 odst. 1 zákona č. 309/2006 Sb., je na stavbu, ktorej sa zúčastňuje viac ako jeden zhotovitel' nutné povolat' koordinátora BOZP už pri príprave stavby. Koordinátor vypracuje a bude priebežne aktualizovat' plán bezpečnosti práce a bude prítomný počas celých stavebných prác až po kolaudáciu stavby.

Okrem iného musí byt' stavenisko po celom obvode oplotené plotom s výškou minimálne $1,8 \mathrm{~m}$ so vstupom a výstupom v blízkosti vrátnice, tak aby sa zamedzilo prístupu nepovolaných osôb na stavbu. Po obvode stavebnej jamy bude zábradlie s výškou 1,1m ako ochrana proti pádu. Pri betonáži konštrukcií budú po obvode stavby inštalované špeciálne diely debniaceho systemu s ochranným zábradlím proti padu s vyśkou 1,1m. Ine otvory, jamy a sachty na stavbe budú prekryté poklopmi s adekvátnou únosnostou. Všetky osoby pohybujúce sa v priestore staveniska sú povinné nosit' ochrannú prilbu. Stavebnú techniku smú používat' iba oprávnené a kvalifikované osoby

VÝPIS POUŽITÝCH NORIEM A PREDPISOV

B.3.1 Pražské stavební předpisy - IPR Praha (2018)
B.3.2 České stavebné normy a Európske normy

ČSN 73 0818	ČSN 73 0802	ČSN 73 0873
ČSN 73 0833	ČSN 73 0821	ČSN 73 0834
ČSN 73 0810	ČSN 01 3495	ČSN EN 1990
ČSN EN 1991	ČSN EN 1992	ČSN EN 1996
ČSN EN 13501	ČSN EN 14604	ČSN EN 1838
ČSN ISO 3864	ČSN EN 15316	

B.3.3 Zákony Českej Republiky

Zákon č. 309/2006 Sb

Zákon č. 183/2006 Sb.

ČASŤ C

SITUAČNĖ VÝKRESY

BAKALÁRSKA PRȦCA:
VYPRACOVAL:
VEDÚCI PRÁCE:
KONZULTANTI:

SEMESTER:
ATELIÉR:

Družstvo Novšie Dvory
Max Neradný
prof. Ing. arch. Michal Kohout
doc. Ing. arch. David Tichý, Ph.D.
Ing. arch. Jan Hlavín, Ph.D.
doc. Dr. Ing. Martin Pospíšil, Ph.D.
Ing. Marta Bláhová
Ing. Dagmar Richtrová
Ing. Radka Navrátilová, Ph.D letný semester 2023/2024 Kohout-Tichý

FAKULTA
ARCHITEKTURY
ČVUT V PRAZE

D. 1 Architektonicko-stavebné riešenie
D.1.0 Obsah kapitoly
D.1.1 Technická správa
D.1.2 Výkresová čast'
D. 2 Stavebne-konštrukčné riešenie
D.2.0 Obsah kapitoly
D.2.1 Technická správa
D.2.2 Statický posudok
D.2.3 Výkresová cast'
D. 3 Požiarne-bezpečnostné riešenie
D.3.0 Obsah kapitoly
D.3.1 Technická správa
D.3.2 Prílohy
D.3.3 Výkresová čast'

DOKUMENTÁCIA STAVEBNÉHO OBJEKTU

D. 4 Technické zariadenie budovy
D.4.0 Obsah kapitoly
D.4.1 Technická správa
D.4.2 Výkresová čast'

BAKALÁRSKA PRÁCA:
VYPRACOVAL:
VEDÚCI PRÁCE:
KONZULTANTI:

SEMESTER:
ATELIÉR:

Družstvo Novšie Dvory
Max Neradný
prof. Ing. arch. Michal Kohout doc. Ing. arch. David Tichý, Ph.D. Ing. arch. Jan Hlavín, Ph.D. doc. Dr. Ing. Martin Pospíšil, Ph.D.
Ing. Marta Bláhová
Ing. Dagmar Richtrová
Ing. Radka Navrátilová, Ph.D letný semester 2023/2024 Kohout-Tichý

FAKULTA
ARCHITEKTURY
ČVUT V PRAZE

D.1.1 Technická správa

D.1.1.6 Tepelno-technické vlastnosti konštrukcie
D.1.1.7 Vplyv na životné prostredie
D.1.1.8

Dopravne riesenie Dodržanie všeobecných požiadavkov na stavbu
D.1.2 Výkresová čast'

D.1.2.1	Pôdorys základov	$1: 50$	D.1.2.A	Detail vstupných dverí	$1: 5$
D.1.2.2	Pôdorys 1PP	$1: 50$	D.1.2.B	Detail soklu	$1: 10$
D.1.2.3	Pôdorys 1NP	$1: 50$	D.1.2.C	Detail atiky terasy A	$1: 10$
D.1.2.4	Pôdorys 2NP	$1: 50$	D.1.2.D	Detail atiky terasy B	$1: 10$
D.1.2.5	Pôdorys 3NP	$1: 50$	D.1.2.E	Detail atiky výtahu A	$1: 5$
D.1.2.6a	Pôdorys 7NP	$1: 50$	D.1.2.F	Detail atiky výtahu B	$1: 5$
D.1.2.6b	Pôdorys terasy	$1: 50$	D.1.2.G	Detail výlezu na strechu	$1: 10$
D.1.2.7	Pôdorys strechy	$1: 50$	D.1.2.H	Detail atiky a vergoly	$1: 10$
D.1.2.8	Rez A-A' priečny	$1: 50$	D.1.2.I	Detail vstupu na balkón	$1: 5$
D.1.2.9	Rez B-B' pozdížny	$1: 50$	D.1.2.J	Detail základovej dosky	$1: 10$
D.1.2.10	Rez C-C' detailný	$1: 25$	D.1.2.K	Detail parapetu s kvetmi	$1: 5$
D.1.2.11	Pohl'ad východný	$1: 100$	D.1.2.L	Detail ukončenia lodžie	$1: 10$
D.1.2.12	Pohl'ad západný	$1: 100$	D.1.2.21	Tabul'ka okien	$1: 50$
D.1.2.13-16	Vodorovné skladby	$1: 10$	D.1.2.22	Tabul'ka dverí	$1: 50$
D.1.2.17-19	Zvislé skladby	$1: 10$	D.1.2.23	Klampiarske výrobky	$1: 50$
D.1.2.20	Kontakty skladieb	$1: 10$	D.1.2.24	Zámočnícke výrobky	$1: 50$

D.1.1 Technická správa

Riešený bytový dom sa nachádza v Prahe, presnejšie v mestskej časti Praha 4 - Lhotka. Novovzniknutá parcela, ktorú si družstvo zakúpilo je umiestnená v prevažne obytnom bloku, ktorý bude mat' poloverejný priechodný vnútroblok. Nadmorská výška parcely sa pohybuje medzi 303 až 304 m.n.m (b.p.v) a klesá smerom na sever. Fasády sú orientované na východ (námestie) a na západ (vnútroblok), zo severu aj z juhu bude stavba susedit' s d'alšími bytovými domami. Hlavný vstup do objektu je z námestia, vedl'ajší z vnútrobloku poprípade z hromadných garáží. Stavba má 7 nadzemných a 3 podzemné podlažia. Objekt má obdížnikový pôdorys $18 \times 21,2 \mathrm{~m}$. Siedme nadzemné podlažie je ustúpené a nachádza sa tu prevádzková strecha. Strecha objektu je plochá so substrátom a extenzívnou zeleňou. Bytový dom je určený na dlhodobé bývanie, v prízemí sa však nachádzajú priestory na prenájom so samostatnými rozvodmi a vchodmi od ulice aj vnútrobloku.

D.1.1.2 Architektonické, materiálové a dispozičné riešenie

Architektonické riešenie objektu vychádza z požiadavkov investora (družstva) na zastúpenie rôznych zdiel'aných priestorov (sauna, posilovňa a komunitný byt), bytov vel'kostí na základe potrieb jednotlivých členov družstva a prenajímatel'ných priestorov v prospech hospodárstva družstva. V podzemí objektu sú okrem parkovacích státí navrhované dodatočné skladové jednotky, miestnost' pre odkladanie bicyklov a kočíkov, technické miestnosti a strojovne. Dom má halovú dispozíciu, byty sú navrhované tak, aby boli denné miestnosti oddelené od nocnych. Objekt ma dve typicke obytne podlazia: typ A (zastúpeny 3x) obsahuje dva byty $3 \mathrm{kk}\left(83,4 \mathrm{~m}^{2}\right)$ s balkónom ($5,2 \mathrm{~m}^{2}$), jeden byt $3 \mathrm{kk}\left(82,6 \mathrm{~m}^{2}\right) \mathrm{s}$ balkónom ($5,2 \mathrm{~m}^{2}$) a jeden byt 2 kk ($54,9 \mathrm{~m}^{2}$) s balkónom ($5,2 \mathrm{~m}^{2}$); typ B (zastúpený 2 x) obsahuje dva byty 4 kk ($117,1 \mathrm{~m}^{2}$) s lodžiou $\left(4,8 \mathrm{~m}^{2}\right)$ a jeden byt $2 \mathrm{kk}\left(58,2 \mathrm{~m}^{2}\right)$ bez vonkajších priestorov. Družstevné priestory (sauna, posilňovňa a komunitný byt) sú sústredené v siedmom ustúpenom podlaží. Navrhované sú tu aj spoločné terasy s pergolou, miestnost' na upratovanie spoločných priestorov a zdiel'ané WC.

Fasáda domu je navrhovaná ako kompaktný zateplovací systém ETICS s povrchovou úpravou omietkou a obkladovými pásikmi Klinker. Z obkladových pásikov je na fasáde vytvorený vzor, ktorý je odlišný tvarom a farbou pre vnútroblok a pre námestie. Na východne fasade budu pouzité obkladove pasiky tmavošedej farby s bielym škarovaním a na zapadnej fasáde svetlobéžové s tmavošedým škárovaním. Estetický výraz fasády dotvárajú rôzne fasádne prvky ako napríklad zásobníky pre kvetináče, zábradlia navrhnuté na mieru, markízy a tieniace rolety na oknách a nápisy označujúce prevádzky v prízemí či popisné číslo domu.

D.1.1.3
 Bezbariérové používanie stavby

Vstupné dvere do objektu sú navrhnuté o šírke 1500 mm s dvoma krídlami (1000 a 500 mm). Rovnako vstupné dvere do prenajímatel'ných jednotiek sú navrhnuté o šírke 1050 mm . Vstupné dvere do bytov majú šírku 900 mm . Výška prahu dverí do exteriéru je 20 mm . Vo vnútrobloku je navrhnuté oplotenie s bránkami šírky 900 mm , od ktorého vedie rampa ku vstupu v sklone 1:12. Výťahová kabína má rozmery $1100 \times 1400 \mathrm{~mm}$ a dvere výtahu sú široké 900 mm .

Všetky spoločné chodby sú dimenzované, tak aby splnili potrebný manipulačný priestor 1500 mm . V hromadných garážach je na každom poschodí navrhnuté jedno invalidné parkovacie státie o šírke 3500 mm a je umiestnené na rovnom povrchu s priamym prístupom k výtahu bez potreby prekonat' vozovku. Byty v objekte nie sú uvažované ako bezbariérové, ale je možné ich dodatocne upravit tak, aby splnili dane poziadavky.

Plocha parcely pre bytovy dom: Zastavaná plocha parcely: Spevnené plochy parcely: Nespevnené plochy parcely: Hrubá podlahová plocha: Zastavaný objem:
Nadmorská výška objektu:
Výška atiky objektu:
Projektovaný počet obyvatelov:
Počet parkovacích státí:

530,00	$\mathrm{~m}^{2}$
381,60	$\mathrm{~m}^{2}$
58,70	$\mathrm{~m}^{2}$
89,70	$\mathrm{~m}^{2}$
2561,83	$\mathrm{~m}^{2}$
8338,50	$\mathrm{~m}^{3}$
$\pm 0,000$	$=303,880$ m.n.m. (b.p.v)
$+23,500$	$=327,380$ m.n.m. (b.p.v)
36	osôb
36	státí

36 osôb
36 státí
D.1.1.5.1 Základové konštrukcie

Návrh základových konštrukcií musí rešpektovat' zistenia z hydrogeologického prieskumu, ktoré hovoria, že hladina podzemnej vody bola narazená v híbke cca 8 metrov. Základová spára sa nachádza v híbke 11,53 metra (11,13 až $11,93 \mathrm{~m}$, z dôvodu sklonu nivelety vozovky v podzemných garážach, tzn. 3,1 až $3,9 \mathrm{~m}$ pod hladinou spodnej vody). Základové konštrukcie sú preto navrhnuté ako kombinácia systému bielej a čiernej vane. Železobetónová základová doska je v 5\% pozdľ̌nom sklone, má projektovanú hrúbku 800 mm , betón triedy $\mathrm{C} 30 / 37 \mathrm{XC2}$, založená je na podkladnom betóne triedy $\mathrm{C} 16 / 20 \mathrm{XO}$ o hrúbke 150 mm , na ktorý bude nanesený asfaltový penetračný náter a celoplošne teplom natavená hydroizolácia z dvoch SBS modifikovaných asfaltovych pásov po 4 mm . Na asfaltove pasy bude ešte pridaná ochranná vrstva proti mechanickému poškodeniu vo forme bentonitovej rohože silnej $6,4 \mathrm{~mm}$ s hutnostou 4000 $\mathrm{g} / \mathrm{m}^{2}$, ktorá zvýši odolnost' voči tlakovej vode. Ked'že je v híbke základovej spáry nestabilné podložie, musia byt́ základy opatrené mikropilotami. Od vedl'ajších objektov sú základová doska a ostatné monolitické konštrukcie v podzemí oddilatované a utesnené pomocou PVC-P waterstop dilatačných pásikov.

D.1.1.5.2

Zaistenie stavebnej jamy
Pred započatím výkopových prác sa do priestoru vnútrobloku navozí všetko potrebné zariadenie staveniska podl'a situácie staveniska (E.2.2). Po zameraní staveniska sa záporovým pažením zaistí spojitá stavebná jama, ktorá bude prebiehat' po obvode celého bloku. Šírka stavebnej jamy je 18,25m. Záporové paženie bude zložené z drevených pažín a ocel'ových profilov HEB180 dlžky 12m, ktoré sa spustia do predvŕtaných otvorov s betónovou zálievkou pre stabilizáciu. Paženie je zaistené pomocou horninových kotiev so zapustenou hlavou. Horninové kotvy sú umiestnené vždy nad podlahou, aby z nich bolo možné počas výstavby vypustit' napätie. Záporové paženie ostáva trvalou súčastoou konštrukcie spodnej stavby. Po výkope jamy sa na paženie nanesie vrstva striekaného betónu, na ktorý sa bude realizovat' asfaltová hydroizolácia.

Konštrukcia spodnej stavby je navrhnutá z vodostavebného betónu triedy C30/37 XC2, kvôli spodnej tlakovej vode, je však dodatočne chránená systémom čiernej vane. Na podkladný betón základovej dosky bude nanesený asfaltový penetračný náter a celoplošne teplom natavená hydroizolácia z dvoch modifikovaných asfaltových pásov po 4 mm . Na asfaltové pásy bude ešte pridaná ochranná vrstva proti mechanickému poškodeniu vo forme bentonitovej rohože silnej $6,4 \mathrm{~mm}$ s hutnostou $4000 \mathrm{~g} / \mathrm{m}^{2}$, ktorá zvýši odolnost' voči tlakovej vode. Od vedl'ajších objektov, sú základová doska a ostatné monolitické konštrukcie v podzemí oddilatované a utesnené pomocou PVC-P waterstop dilatačných pásikov. Zvislá hydroizolácia bude nanesená na vrstvu striekaného betónu na záporovom pažení. Hydroizolácia je vytiahnutá min. 300 mm na sokel budovy, v miestach kde sa nachádzajú vstupy do objektu je ukončená a mechanicky prichytená na rámoch dverí.

D.1.1.5.4
 Horizontálne konštrukcie

Všetky horizontálne konštrukcie budú zhotovené na mieste stavby z monolitického železobetónu triedy C45/55 s výztužou z oceli B500. Monolitické stropné dosky sú navrhnuté o sile 200 mm , v nadzemných podlažiach sú väčšinou pnuté obojsmerne do skrytých prievlakov s prierezom $200 \times 650 \mathrm{~mm}$ či priznaných prievlakov s prierezom $600 \times 250 \mathrm{~mm}$, v podzemných podlažiach sú dosky pnuté zväčša jednosmerne do priznaných prievlakov.

D.1.1.5.5 Vertikálne konštrukcie

Nosné vertikálne konštrukcie budú zhotovené na mieste stavby z monolitického železobetónu triedy C45/55 s výztužou z oceli B500. Obvodové steny sú kombinované z železobetónu o sile 250 mm a plynosilikátových tvárnic s drážkou s rozmermi $250 \times 500 \times 250 \mathrm{~mm}$, ktoré v tomto prípade nebudú spíňat nosnú funkciu. Štítové steny sú vyrobené zo železobetónu o sile 250 mm a od vedl'ajších objektov sú oddelené 50 mm hrubými doskami z minerálnej vlny. Vnútorne nosne steny su rovnako z 250 mm hrubeho zelezobetonu, medzibytove priecky su z plynosilikátových tvárnic na drážku s rozmermi $250 \times 500 \times 250 \mathrm{~mm}$. Priečky v bytoch sú vyrobené z plynosilikátových tvárnic na drážku s rozmermi $125 \times 500 \times 250 \mathrm{~mm}$.

D.1.1.5.6 Schodiská

V objekte sa nachádzajú celkom tri rôzne schodiská. V každej únikovej ceste sa nachádza jedno schodisko z prefabrikovaného železobetónu. V únikovej ceste 1-A.N1/N7 je šírka schodiskového ramena 1200 mm , šírka podesty 1800 mm a šírka medzipodesty 1600 mm . Híbka stupňov je tu 275 mm a výška 173 mm . V únikovej ceste 2-A.P3/N1 sú tieto parametre prakticky identické s rozdielom šírky podest a medzipodest, ktoré tu sú iba 1200 mm . Tretie schodisko vedie do mezanínu v nebytovom priestore N1.2.01 a je prefabrikovane z ocelovych dielov, s možnostiou demontáže. Toto schodisko je široké 1100 mm s híbkou stupňa 275 mm a výškou stupňa 159mm

D.1.1.5.7 Šachty

Inštalačné šachty v objekte sú navrhované ako samostatné požiarne úseky, tzn. Sú od ostatných priestorov oddelené požiarne deliacou konštrukciou (priečka z pórobetónových tvaroviek o hrúbke 125 mm). Všetky inštalačné šachty sú vyvedené nad strechu objektu, kde sú zaizolované tepelnou izoláciou z extrudovaného polystyrénu a prekryté plechovou strieškou. Výṫahová šachta je navrhnutá s vnútornou nosnou stenou z monolitického železobetónu hrubého 200 mm a v nadzemných podlažiach aj vonkajšou stenou z pórobetónových tvaroviek hrubých $\mathbf{2 5 0} \mathbf{~ m m ~ s ~ a k u s t i c k o u ~ v r s t v o u ~ z ~ m i n e r a ́ l n e j ~ v l n y ~ m e d z i ~ t y ́ m i t o ~ d v o m a ~ s t e n a m i . ~}$

Podlahy v objekte sú navrhnuté s adekvátnou nášlapnou vrstvou pre typ prevádzky miestnosti, kde sa daná podlaha nachádza. Všetky podlahy v nadzemných podlažiach obsahujú vo svojej skladbe akustickú izoláciu z podlahového polystyrénu a roznášaciu (plávajúcu) vrstvu z betónovej mazaniny $\mathrm{C} 20 / 25$, vyztuženú kari sietou KA16 s priemerom prútov 4 mm a okom $100 \times 100 \mathrm{~mm}$. V prípade podlahy v kúpelniach bytov a podlahy v spa a v posilňovni, je v skladbe podlahy zahrnutá systémová doska podlahového kúrenia. V obytných miestnostiach bytov je ako náslapná vrstva navrhnutá laminatová podlaha so vzorom prirodného dreva a drevenymi soklovými lištami. Vo vstupe, chodbách, hale a na podestách schodiska je navrhnutá podlaha zo spekanej dlažby s čiernobielym vzorom, so soklom obloženým rovnakou dlažbou. V nebytových priestoroch v 1NP je navrhnutá nášlapná vrstva z lepených PVC dlaždíc s dlhou životnostou. Na steny naväzuje hliníkovou soklovou lištou. V podzemných podlažiach je ako nášlapná vrstva navrhnutá epoxidová stierka nanesená na samonivelačnú cementovú hmotu vyztuzenú armovacou tkaninou s okom $4 \times 4 \mathrm{~mm}$. Toto súvrstvie sa aplikuje priamo na nosnú vrstvu zo železobetónu. Podlaha v pivniciach bude pred aplikáciou nášlapnej vrstvy dorovnaná klinmi z expandovaného polystyrénu prekrytými betónovou mazaninou. Podlaha medzi 1PP a 1NP je dodatočne tepelne zaizolovaná na svojej spodnej strane izolačnými doskami z EPS granulátu a cementu, ktoré zároveň zvyšujú požiarnu odolnost' stropnej konštrukcie.

D.1.1.5.9
 Strechy

Vd'aka ustúpenému 7NP má objekt dve úrovne strechy. V 7NP sa jedná o prevádzkové strechy a strecha nad 7NP je navrhnutá extenzívna zelená, jednopláštová s klasickým poradím vrstiev. Spádová vrstva striech je riešená klinmi z tepelnej izolácie - extrudovaného polystyrénu. Zrážková voda je odvádzaná do strešných vpustí s filtrami nečistôt a následne zvedená PE potrubím daždovej kanalizácie v inštalačných šachtách do podzemnej akumulačnej nádrže s bezpečnostným prepadom na pozemku vo vnútrobloku. Hydroizolácia strechy je riešená pomocou modifikovaných asfaltových pásov v dvoch vrstvách na tepelnej izolácii a jedným poistnym asfaltovym pasom medzi izolaciou a nosnou konstrukciou. Asfaltove pasy pouzite na extenzívnej zelenej streche spľ̌ajú požiadavok na ochranu proti prerastaniu korienkov, je na nich položená nopová fólia s nakašírovanou geotextílou, ktorá spíňa drenážnu funkciu pri odvádzaní prebytočnej vody a jej filtrácii od nečistôt. Dodatočne sú medzi nopovou fóliou a substrátom použité špeciálne vegetačné izolačné dosky z minerálnej vlny pre extenzívne strechy. Pochodzie strechy v 7NP majú nášlapnú vrstvu z drevených latí na drevenom rošte na rektifikovatel'ných terčoch s korektorom sklonu, pod ktoré sa podložia 200x200mm štvorce z ochrannej geotextílie, určené ako ochrana pred mechanickým poškodením hydroizolácie pod terčom. Na pochodzích strechách je navrhnutá hydroizolácia formou PVC-P fólie. Za strechu sa dá ešte považovat' cca 450 mm široký výbežok podzemných podlaží pod terénom, ktorý je chránený hydroizoláciou z dvoch modifikovaných asfaltových pásov. Hydroizolácia je chránená doskami z extrudovaného polystyrénu pod odkvapovým chodníkom z riečneho kameniva.

D.1.1.5.10
 Balkóny

Nosná konštrukcia balkónov je riešená ako monolitická železobetónová doska votknutá do železobetónu obvodových stien pomocou špeciálnych konzolových nosníkov - Isokorb na prerušenie tepelného mostu. Na nosnú dosku sa nanesie spádová vrstva formou vyztuženej betónovej mazaniny v sklone 1% od fasády. Betónová mazanina bude potretá špeciálnym penetračným náterom pre PMMA hydroizolačnú stierku, ktorá má chránit konštrukciu balkónu proti dažd'ovej vode. Na stierku bude položená dlažba rovnakého vzoru ako je v komunikačných priestoroch budovy. Dlažba bude prilepená cementovým lepidlom so sklovláknitou tkaninou. Balkón bude ukončený odkvapnicou.

V objekte sú navrhnuté celkom štyri lodžie s rozmermi cca $2,4 x 1,65 \mathrm{~m}$ na západnej fasáde objektu. Nosná konštrukcia pod lodžiou je v zásade pokračovanie stropnej dosky, bez akéhokol'vek zníženia. Na nosnú konštrukciu sa osadia spádové kliny z extrudovaného polystyrénu v sklone 1% smerom k zábradliu lodžie. Na kliny sa položí parotesná polyetylénová fólia proti prenikaniu vlhkosti do konštrukcie budovy. Na fóliu sa umiestnia tepelne izolačné dosky z polyisokyanurátu $s \lambda=0,022 \mathrm{v}$ hrúbke 140 mm . Na tepelnej izolácii bude hydroizolačná paropriepustná polypropylénová fólia. Nášlapná vrstva bude z drevených latí na drevenom rošte na rektifikačných terčoch s korektorom sklonu, pod ktoré sa podložia $200 \times 200 \mathrm{~mm}$ štvorce z ochrannej geotextílie, určené ako ochrana pred mechanickým poškodením hydroizolácie pod terčom. Kvôli rozdielu hrúbky skladieb na oboch stranách vchodového okna bude pri vchádzaní a výchádzaní z lodžie nutné prekonat' schod výšky cca 160 mm .

D.1.1.5.12

VýpIne otvorov
V celom objekte sú navrhnuté okná s predsadenou montážou od výrobcu Aluprof typu MB104 s tepelným prestupom celého okna v hodnote $0,53 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, vstupné dvere do objektu a nebytových priestorov sú z rovnakého systému. Rám okien a dverí na fasáde má matný lak antracitovej farby, v interiéri drevodekor z katalógu. Sklenená výplň je izolačné trojsklo. Vchodové dvere do bytov, ktoré zároveň slúžia ako požiarny uzáver otvoru v požiarnej stene, sú navrhnuté ako ocelové bezpečnostné protipožiarne s laminátovým povrchom antracitovej farby, hliníkovou zárubňou a dreveným prahom. Dvere na chránených unikových cestách sú navrhnuté presklené s čiernym hliníkovým rámom od výrobcu Aluprof. Interérové dvere sú navrhnute s vostinovou vyplnou a vzorom prírodneho dreva, sú osadene do oblozkovych drevenych zárubní. Interiérové dvere vedúce do miestností s odsávaním vzduchu (wc, kúpelňa) sú vybavené vetracím prieduchom.

Vstupné dvere do objektu sú navrhnuté o šírke 1500 mm s dvoma krídlami (1000 a 500 mm). Vstupné dvere do nebytových priestorov sú jednokrídlové o šírke 1050 mm . Vstupné dvere do bytov majú šírku 900 mm . Výška prahu dverí do exteriéru je 20 mm . Dvere výtahu sú široké 900 mm . Dvere vo vnútri bytov sú široké 800 mm pre obytné miestnosti a 700 mm pre ostatné miestnosti.

Na streche objektu je navrhnutý pevný svetlík od výrobcu Helux s hrubým rozmerom $1350 \times 1350 \mathrm{~mm}$. Výlez na strechu je od výrobcu Helux s teleskopickým rebríkom a s rozmerom $900 \times 700 \mathrm{~mm}$.
D.1.1.5.13 Omietky a obklady

V exteriéri objektu je použitá dvojvrstvová vápennocementová omietka vyztužená armovacou tkaninou s okom $4 \times 4 \mathrm{~mm}$ v hrúbke 15 mm . Zložená je z jadrovej paropriepustnej omietky v hrúbke cca 12 mm a hydrofobizovanej jemnozrnnej štukovej omietky v hrúbke cca 3 mm . Nanesená je na kontaktný zateplovací systém ETICS tvorený doskami z minerálnej vlny po 200 mm s $\lambda=0,035$. Dosky sú k nosnej konštrukcii prilepené a mechanicky pripevnené 4 fasádnymi tanierovými hmoždinkami na dosku, 150 mm od všetkých rohov dosky. V miestach, kde je na fasáde použitý obklad je pridaná vrchná doska hrubá 40 mm , kotvená hmoždinkami s ocel'ovým tŕňom. Na tieto vystúpené dosky sa nanesie suchá maltová zmes vyztužená armovacou tkaninou a prilepia sa tu keramické obkladové pásiky. Na východnej fasáde budú použité obkladové pásiky tmavošedej farby s bielym škárovaním a na západnej fasáde vápenocementová omietka. V interiéri je navrhnutá zväčša sádrová omietka v hrúbke 10 mm . V miestnosti N7.3.03 bude kvôli zvýšenej vlhkosti použitá vápenná štuková omietka na vápennocementovej podkladnej omietke. V zdiel'aných komunikačných priestoroch je na stenách nalepený keramický obklad do výšky $1,2 \mathrm{~m}$ so vzorom dubového dreva.

Vonkajšie parapety okien, atikový plech na streche a striešky nad inštalačnými šachtami sú navrhnuté z hliníkového plechu hrúbky 1 mm s matným antracitovým lakom na povrchu farby RAL 7016 alebo matných bielym lakom farby RAL 1013 (ref. tabul'ka D.1.2.23).

D.1.1.5.15 Zámočnícke výrobky

Pre objekt je navrhnuté zábradlie na objednávku a bude použité v rôznych rozmerových variantách pred fracúzskymi oknami, na balkónoch a lodžiách. Zábradlie bude vyrobené z HPL laminátových dosiek hrúbky 12 mm so strojovo vyrezaným vzorovaním podl'a projektovej dokumentácie. Zábradlie bude kotvené ocelovými šroubami do fasády alebo inej nosnej konštrukcie. Povrch dosiek bude mat' farbu RAL 1013.

Stípiky zábradlia na schodiskách a v medzibytovej hale budú vyrobené z nerezových jaklov s rozmerom $20 \times 20 \times 1 \mathrm{~mm}$ v osovej vzdialenosti 110 mm od seba, kotvených do strany schodiskového ramena alebo podesty. Madlo zábradlia bude vyrobené z moreného a lakovaného dubového dreva prírodnej farby s ochranným náterom a profilom $45 \times 45 \mathrm{~mm}$. Zábradlie v podzemných podlažiach bude mat' hliníkové madlo s matným lakom RAL 7016 a profilom $45 \times 45 \mathrm{~mm}$.

D.1.1.5.16 Sauna

V 7NP je navrhnutá sauna, ktorá sa bude zhotovovat' na mieste do pripravenej miest nosti z nenosných priečok hrúbky 125 mm . Steny sauny budú vyrobené z dreveného rámu, ktorý sa bude montovat priamo na tvarovky priečky. Na montáž rámu budú použité late profilu $40 \times 60 \mathrm{~mm}$. Rám bude vyplnený dvoma doskami z minerálnej vlny o hrúbke 60 mm , na ktoré sa dá hliníková parotesná fólia. Takto opatrený rám sa obloží z vnútornej strany lipovými obkladovými palubkami. Táto skladba platí aj pre strop sauny. Dvere do sauny budú z kaleného šedého skla, osadené do lipového rámu a s lipovou klučkou. Dvere majú rozmer $2000 \times 700 \mathrm{~mm}$.

D.1.1.6

Tepelno-technické vlastnosti konštrukcie
Riešený objekt má obvodové steny navrhnuté s kontaktným zateplovacím systémom ETICS s izolačnými doskami z minerálnej vlny. Budova má dva hlavné typy obvodovej steny zohl'adnené vo výpočte tepelných strát, jedna varianta je s vápennocementovou omietkou na 200 mm izolácie, druhá varianta je obklad keramickými pásikmy na 240 mm izolácie. Strecha objektu je navrhnutá plochá s extenzívnou zeleňou s tepelnou izoláciou hrubou 250 mm z extrudovaného polystyrénu. V celom objekte sú navrhnuté okná od výrobcu Aluprof typu MB104 s tepelným prestupom celého okna v hodnote $0,53 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, vstupné dvere sú z rovnakého systému. Energetický štítok obálky budovy bol na základe výpočtu stanovený na A - mimoriadne úsporná.
D.1.1.7 Vplyv na životné prostredie

Objekt má navrhnutú extenzívnu vegetačnú strechu, ktorá prispieva k jemnejšej letnej klíme v oblasti. Zachytená dažd’ová voda je akumulovaná v podzemnej nádrži a využívaná k závlahe intenzívnej zelene.
D.1.1.8 Dopravné riešenie

Doprava v klude je riešená koordinovane, a to spoločnými hromadnými garážami v podzemných podlažiach, ktoré obiehajú celý blok (ref. výkres C.4). Vjazd a výjazd z hromadných garáží je na severe bloku (ref. výkres C.1).

V podzemných podlažiach objektu je navrhnutých 36 parkovacích státíz toho 3 státia pre osoby s obmedzenou možnostou pohybu. Šírka parkovacích státí pri pevnej prekážke je 2750 mm , bez prekážok 2500 mm a pri státiach pre invalidov 3500 mm . Dížka parkovacích státí je 5 m . V garáži je obojsmerná premávka po vozovke širokej 6 m - teda $2 \times 3 \mathrm{~m}$ pruh. V rádiuse 50 m od parteru domu je podl'a územnej štúdie zaistených 10 verejných pozdížnych parkovacích státí. Tieto státia môžu slúžit' ako návštevnícke. Priestory na prenájom majú zaistených 6 parkovacích státí v hromadných garážach v 3PP.

VÝPOČET DOPRAVY V KL'UDE			
ÚČELOVÁ JEDNOTKA	j	OS /j	OS
byty s 1 obyt. miestnostiou	2	0,5	1
byty do $100 \mathrm{~m}^{2}$	9	1	9
byty nad $100 \mathrm{~m}^{2}$	2	2	4
VYŽADOVANÝ POČET ODSTAVNÝCH STÁTí	$\mathbf{1 4}$		
ZAISTENÝ POČET ODSTAVNÝCH STÁTí	$\mathbf{3 6}$		

VÝPOČET DOPRAVY V KL'UDE			
ÚČELOVÁ JEDNOTKA	m^{2}	$\mathrm{~m}^{2} / \mathrm{PS}$	PS
nebytový priestor (agentúra)	111	35	3
nebytový priestor (showroom)	121	50	3
VYŽADOVANÝ POČET PARKOVACÍCH STÁTí	$\mathbf{6}$		
ZAISTENÝ POČET PARKOVACÍCH STÁTí	$\mathbf{1 0}$		

D.1.1.9 Dodržanie všeobecných požiadavkov na stavbu

Stavenisko sa nachádza v oblasti, v ktorej bude prebiehat development v mierke cele štvrti, takže počas výstavby nebudú v tesnej blízkosti žiadne obývané budovy. Do priestoru staveniska zasahuje niekol'ko existujúcich objektov, ktoré bude pred začatím výstavby nutné zdemolovat. Stavenisko bude koordinované pre celý blok, ktorého súčast'ou je riešený stavebný objekt E (SO 02 podl'a projektovej dokumentácie). Prístup na stavenisko bude zabezpečený novou cestnou komunikáciou podl'a platnej územnej štúdie Nové Dvory. Väčšina staveniska sa rozprestiera v priestore budúceho vnútrobloku, návrh však počíta aj s dočasným záborom do ulice, na pozemku HI. mesta Praha. Dochádza tu k zúženiu cestnej komunikácie zo 6 m na 5 m . Nedôjde k zníženiu cestných pruhov, bude však nutné obmedzit' maximálnu povolenú rýchlost' v tomto úseku. Tento zábor o vel'kosti $6,4 \times 24,5 \mathrm{~m}$ slúži ako vstup na stavenisko, a to aj pre chodcov aj pre vozidlá stavby. Zábor je po celom obvode oplotený stavebným plotom s plachtou proti šíreniu prachu. Na oplotení budú tabul'ky zakazujúce vstup nepovolaných osôb. Je tu navrhnutá vrátnica v dočasnom stavebnom kontajneri od výrobcu ToiToi, okrem toho tu budú umiestnené odpadové nádoby na plasty, kovy, betón, stavebný odpad a nebezpečný odpad. Vozidlám privážajúcim stavebné materiály bude umožnený vjazd do oploteného záboru. V zábore je jednosmerná stavebná komunikácia určená na zastavenie vozidiel a vyloženie alebo naloženie materiálov. Komunikácia ústi opät' na ulicu za križovatkou. V okolí stavby bude umiestnené dočasné zvislé dopravné značenie informujúce o prebiehajúcej stavbe a vychádzajúcich vozidlách. Hlavný vstup pre peších pracovníkov je takisto cez tento zábor. Pracovníci sa pri príchode na stavbu prihlásia na vrátnici a pomocou stavebného výt'ahu č. 1 sa dostanú na dno stavebnej jamy. Na opačnej strane jamy je umiestneny stavebny vytah č.2, ktorym sa dostanú do priestoru zariadenia staveniska. Podl'a § 14 odst. 1 zákona č. 309/2006 Sb., je na stavbu, ktorej sa zúčastňuje viac ako jeden zhotovitel' nutné povolat' koordinátora BOZP už pri príprave stavby. Koordinátor vypracuje a bude priebežne aktualizovat' plán bezpečnosti práce a bude prítomný počas celých stavebných prác až po kolaudáciu stavby. Okrem iného musí byt' stavenisko po celom obvode oplotené plotom s vyśkou minimálne $1,8 \mathrm{~m}$ so vstupom a vystupom v blízkosti vrátnice, tak aby sa zamedzilo prístupu nepovolaných osốb na stavbu. Po obvode stavebnej jamy bude zábradlie s výškou 1,1m ako ochrana proti pádu. Pri betonáži konštruk cií budú po obvode stavby inštalované špeciálne diely debniaceho systému s ochranným zábradlím proti pádu s výškou $1,1 \mathrm{~m}$. Iné otvory, jamy a šachty na stavbe budú prekryté poklopmi s adekvátnou únosnost'ou. Všetky osoby pohybujúce sa v priestore staveniska sú povinné nosit' ochrannú prilbu. Stavebnú techniku smú používat' iba oprávnené a kvalifikované osoby.

obkladovétehlové pásiky POVRCH HLADKYं, 250x65x10mm
EPENÉ CEMENTOVYM LEPIDLO SPÁrovanie Bielou Maltou VARIANT ŠEDOMODRÝ
obkLadovétehlové pásiky POVRCH HLADKÝ, 250x65510mm
OPENÉ CEMENTOVYM LEPIDLOM SPAROVANIE C IIERNOU MALTOU EXTERIÉROVA MALBA RAL 1013, STUKOVÁ VÁPENOCEMENTOVÁ OMIETKA HYOROFOBIZOVANÁ 3 mm JADROVA VAPENOCEMENTOVA
OMIETKA PAROPRIEPUSTNA 12 m OMIETKA PAROPRIEPUSTNÁ 12 mm

AR 2023/2024
AR
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichy
ÚSTAV
15118 Ústav nauky o budovách
doc. Ing. arch. David Tichý Ph.D.

Ing. arch. Jan Hlavin Ph.D

Max Neradný ${ }^{\text {AUTOR }}$	
DR NOVŠ	PROJEKT
ARCHIT STAVEB	KO- ENIE
ZMENŠ NA FASÁD	L'AD ESTIA
D.1.2.11m	ČÍSLO
1:100	MIERKA
$2 \mathrm{xA4}$	FORMÁT
15.05.2024	DÁTUM

OBKLadovétehlové pásiky POVRCH HLADK', 250x65x100mm
LEPENÉ CEMENTOViM LEPDDLOM LEPENE CEMENTOVMM LEPIDLOM
SPAROVANIE BIELOU MALTOU VARIANT ŠEDOMODRY
OBKLADOVÉ TEHLOVÉ PÁSIKY POVRCH HLADḰ, 250x65xIOMm
LEPENE CEMENTOVYM LEPDDLOM SPAŔROVANE CIIERNOU MALTOU
VARIANTBIELY Exteriérové malba ral 1013, STUKOVÁ VÁPENOCEMENTOVÁ OMIETKA HYOROFOBIZOVANÁ 3 mm
JADROVÁ VÁpenocementová JADROVA VÁPENOCEMENTOVA
OMETKA PAROPRIEPSTNA 12 mm
BAKALÁRSKA PRÁCA
AR 2023/2024
LETNY SEMESTER

PO4 - ODPADOVÁ MIESTNOSŤ

P06-PODLAHA V ZÁVETRÍ

fakulta

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
PROJEKT DRUŽSTVO NOVŠIE DVORY	
ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE	
VODOROVNÉ SKLADBY 01-06	
D.1.2.13	ČíSLO
1:10	MIERKA
2xA4	FORMÁT
02.10.2023	DÁTUM

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
konzultant
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
DRI	PROJEKT
ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE	
VODOROVNÉ SKLADBY 07-12	
D.1.2.14	čísLO
1:10	MIERKA
2xA4	FORMÁT
02.10.2023	DÁTUM

P14-PODLAHA V KÚPEL'NIACH A SPA
VEL'KOFORMÁT. KAMENINOVÁ DLAŽBA 1200x600x8MM CEMENTOVÉ FLEXIBILNÉ LEPIDLO 2MM
 HYDROIZOLAČNÁ CEMENTOVÁ HMOTA + PENETRÁCIA BETÓNOVÁ MAZANINA C20/25, 50MM VYZTUŽENÁ SKLOTEXTILNOU TKANINOU, OKO $40 \times 40 \mathrm{MM}, 145 \mathrm{~g} / \mathrm{m}^{2}$ SYSTÉMOVÁ PODLAHOVÁ DOSKA Z EPS, $\lambda=0,034$ PRE POTRUBIE PODL. KÚRENIA Ø20MM ROZMER DOSKY 1050×600×50MM
Z ŻELEZOBETÓNOVÝ STROP 2OOMM PENETRAČNÝ NÁTER RIKOMBI KONTAKT SÁDROVÁ OMIETKA 10MM

P15 - PODLAHA VO WC A KOMORE

DREVENÉ LATE $4000 \times 140 \times 28 \mathrm{~mm}$, POVRCH HLADKÝ, SIBÍRSKY MODRÍN, NÁTER TERASOVÝM OLEJOM GUMOVÁ TERASOVÁ LIŠTA $30 \times 7 \times 700 \mathrm{~mm}$ PODKLADNÝ DREVENÝ RÁM $60 \times 40 \mathrm{~mm}$ á 500 mm , MODRÍN KOTVENIE NEREZOVÝMI ZÁPUSTNÝMI SKRUTKAMI 60 mm REKTIFIKAČNÝ TERČ S KOREKTOROM SKLONU
 OCHRANNÁ GEOTEXTÍLIA 150g/m² (POD TERČE) PVC-P OCHRANNÁ FÓLIA 1,2mm, ANTRACIT, POCHÔDZNA PVC-P HYDROIZOLAČNÁ FÓLIA 1,8mm ŠEDÁ
POLYISOKYANURÁTOVÁ DOSKA 140MM, $\lambda=0,022$
PVC-P PAROTESNÁ FÓLIA LEPENÁ
SPÁDOVÝ KLIN Z EPS MIN. 20MM ŻELEZOBETÓNOVÝ STROP 200MM PENETRAČNÝ NÁTER RIKOMBI KONTAK SÁDROVÁ OMIETKA IOMM

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichy
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
PROJEKT DRUŽSTVO NOVŠIE DVORY	
ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE	
$\begin{aligned} & \text { VODOROVNÉ } \\ & \text { SKLADBY 13-18 } \end{aligned}$	
D.1.2.15	ČÍSLO
1:10	MIERKA
$2 \times A 4$	FORMÁT
02.10.2023	DÁTUM

P19 - EXTENZÍVNA VEGETAČNÁ STRECHA

P20 - EXTENZÍVNA VEGETAČNÁ STRECHA DO 3OCM OD ATIKY

P21-EXTENzívNA VEGETAČNÁ STRECHA NAD SAUNOU

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
PROJEKT DRUŽSTVO NOVŠIE DVORY	
ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE	
VODOROVNÉ SKLADBY 19-20	
D.1.2.16	ČÍSLO
1:10	MIERKA
$2 \mathrm{xA4}$	FORMÁT
02.10.2023	DÁTUM

SO1- OBVODOVÁ STENA S OBLOŻENOU LISÉNOU A OMIETKOU

SO2 - OBVODOVÁ STENA S OMIETNUTOU LISÉNOU A OBKLADOM

S03- OBVODOVÁ STENA NENOSNÁ

SO4-PODZEMNÁ OBVODOVÁ STENA V NEZÁMRZNEJ HĹBKE

SO5 - PODZEMNÁ OBVODOVÁ STENA V ZÁMRZNEJ HĹBKE

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichy
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
PROJEKT DRUŽSTVO NOVŠIE DVORY	
ARCHITE STAVEBN	KO- ENIE
$\begin{aligned} & \text { ZVISLÉ VÝKRES } \\ & \text { SKLADBY 01-06 } \end{aligned}$	
D.1.2.17	ČÍSLO
1:10	MIERKA
$2 \mathrm{xA4}$	FORMÁT
02.10.2023	DÁTUM

SO7- MEDZIBYTOVÁ STENA NENOSNÁ

SO8 - MEDZIBYTOVÁ STENA NOSNÁ

SO9-PRIEČKA S OMIETKOU

S10 - PRIEČKA S OBKLADOM

SII - STENA SAUNY

S13-PRIEČKA V PIVNICI

S14 - STENA VÝŤAHOVEJ ŠACHTY

ŠACHTA

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
PROJEKT DRUŽSTVO NOVŠIE DVORY	
ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE	
ZVISLÉ SKLADBY 07-14	
D.1.2.18	ČíSLO
1:10	MIERKA
2xA4	FORMÁT
02.10.2023	DÁTUM

S15 - NOSNÁ STENA V PODZEMNÝCH PODLAŽIACH

S16 - NOSNÁ STENA V ODPADOVEJ MIESTNOSTI

S17 - NENOSNÁ STENA V ODPADOVEJ MIESTNOSTI
 SÁdrová omietka 1omm Penetračný náter rikombi kontakt PÓROBETÓNOVÉ TVÁRNICE 500×250x125MM LePIACA STIERKOVÁ HMOTA NA BÁZI CEMENTU 3-4kg/m DOSKA Z MINERÁLNEJ VLNY 150MM, $\lambda=0,035$

LEPIACA STIERKOVÁ HMOTA NA BÁZI CEMENTU 3MM armovacia tkanina, oko 4x4mm
ODPAD. MIESTNOSŤ JADROVÁ VÁPENOCEMENTOVÁ OMIETKA PAROPRIEPUSTNÁ 12MM

FAKULTA
ARCHITEKTURY ČVUT V PRAZE
BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

| Max Neradný |
| :---: | ---: |

-

ZVISLÉ SKLADBY 15-17

fakulta

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER

Atelier Kohout-Tichy

15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
kONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný ${ }^{\text {AUTOR }}$	
	PROJEKT
ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE	
KONTAKTY SKLADIEB	
D.1.2.19	číSLO
1:10	MIERKA
2xA4	FORMÁT
02.10.2023	DÁTUM

KERAMICKÁ PARAPETNÁ DOSKA $160 \times 105 \times 15 \mathrm{~mm}$, GLAZÚRA ŠEDOMODRA VYSOKOPEVNOSTNÉ VODOTESNÉ MONTÁŽNE LEPIDLO NA BÁZI MS POLYMÉROV

OBKLADOVÉ TEHLOVÉ PÁSIKY POVRCH HLADKÝ, 250×65x10mm LEPENÉ CEMENTOVÝM LEPIDLOM SPÁROVANIE BIELOU MALTOU VARIANT ŠEDOMODRÝ
PRIEBEŽNÝ HLINÍKOVÝ ŽLAB S FILTROM NEČISTÔT $50 \times 40 \mathrm{~mm}$, ODTOKOVÁ RÚRA Ø15mm PRIEBEŽNÝ HLINÍKOVÝ PÁS $65 \times 4 \mathrm{~mm}$ OBKLADOVÉ TEHLOVÉ PÁSIKY POVRCH HLADKÝ, 250x65x10mm LEPENÉ CEMENTOVÝM LEPIDLOM SPÁROVANIE ČIERNOU MALTOU VARIANT BIELY

OKENNÝ PROFIL S PRIZNANOU ODKVAPNICOU S VÝZTUŽNOU TKANINOU

ROHOVÁ LIŠTA S VÝZTUŽNOU TKANINOU ATIKOVÝ KLIN Z MINERÁLNEJ VLNY $100 \times 100 \mathrm{~mm}$ UKONČOVACIA LIŠTA S ODKVAPNICOU S VÝZTUŽNOU TKANINOU KERAMICKÝ PÁSIK V SKLONE 15° VYPLNIŤ LEPIDLOM DO SKLONU 15° ŠROUBOVACIA HMOŽDINKA S OCELOVÝM TŔŇOM
MONTÁŽ CEZ ARMOVACIU TKANINU, 300 mm HLBOKÁ SPÁRA PRE VYTVORENIE ODKVAPNICE ZÁSOBNÍK NA ROLETY POLYURETANOVÝ MONTÁŽNY PROFIL, $\lambda=0,022$ OKENNY PROFIL S PRIZNANOU ODKVAPNICOU S VÝZTUŽNOU TKANINOU PAROTESNA PÁSKA SÁDROVÁ OMIETKA 10mm

- POLYMERBETÓNOVÝ SAMOZAVLAŽOVACÍ KVETINÁČ $340 \times 180 \times 500 \mathrm{~mm}$, GLAZÚRA ŠEDOMODRÁ, VYROBENÉ NA OBJEDNÁVKU

HLINÍKOVÉ MADLO 45x45mm, FARBA RAL9017 KERAMICKÁ PARAPETNÁ DOSKA $160 \times 105 \times 15 \mathrm{~mm}$, GLAZÚRA ŠEDOMODRÁ
NEREZOVÁ KONZOLA PRE MADLO, LAK RAL 9017 PLASTOVÝ PRVOK PRE ZACHYTENIE KVAPIEK VODY POPLASTOVANÁ LIŠTA MECHANICKY KOTVENÁ PRE NATAVENIE FÓLIE

PLASTOVÝ ŽLAB S ROŠTOM $118 \times 100 \times 1000 \mathrm{~mm}$ NA GUMOVEJ PODLOŽKE, S VOL'NÝM ODTOKOM DREVENÉ LATE 4000x140x28mm, POVRCH HLADKÝ, SIBÍRSKY MODRÍN, NÁTER TERASOVÝM OLEJOM GUMOVÁ TERASOVÁ LIŠTA $30 \times 7 \times 700 \mathrm{~mm}$ PODKLADNÝ DREVENÝ RÁM $60 \times 40 \mathrm{~mm}$ á 500 mm , MODRÍN KOTVENIE NEREZOVÝMI ZÁPUSTNÝMI SKRUTKAMI 60 mm
PVC-P OCHRANNÁ FÓLIA 1,2mm ANTRACIT S POCHÔDZNOU ÚPRAVOU VYZTUŽENÁ POLYESTEROVOU TKANINOU

PVC-P HYDROIZOLAČNÁ FÓLIA 1,8mm ŠEDÁ MECHANICKY KOTVENÁ A LEPENÁ K PODKLADU VYZTUŽENÁ POLYESTEROVOU TKANINOU

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIER
Atelier Kohout-Tichy
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.
Max Neradný
PROJEKT
DRUŽSTVO
NOVŠIE DVORY
ARCHITEKTONICKO- ČASŤ
STAVEBNE RIEŠENIE

DETAIL

 ATIKY TERASY| D.1.2.C | ČÍSLO |
| :---: | :---: |
| $1: 10$ | MIERKA |
| $2 \times A 4$ | FORMÁT |
| 04.04 .2024 | DÁTUM |

VYSOKOPEVNOSTNÉ VODOTESNÉ MONTÁŽNE LEPIDLO NA BÁZI MS POLYMÉROV PÓROBETÓNOVÉ TVÁRNICE REZANÉ
$310 \times 180 \times 500 \mathrm{~mm}$, OBKLADOVÉ TEHLOVÉ PÁSIKY POVRCH HLADKÝ, $250 \times 65 \times 10 \mathrm{~mm}$ LEPENÉ CEMENTOVÝM LEPIDLOM SPÁROVANIE BIELOU MALTOU VARIANT ŠEDOMODRÝ

OBKLADOVÉ TEHLOVÉ PÁSIKY POVRCH HLADKÝ, $250 \times 65 \times 10 \mathrm{~mm}$ LEPENÉ CEMENTOVÝM LEPIDLOM SPÁROVANIE ČIERNOU MALTOU VARIANT BIELY OKENNÝ PROFIL S PRIZNANOU ODKVAPNICOU S VÝZTUŽNOU TKANINOU ROHOVÁ LIŠTA S VÝZTUŽNOU TKANINOU ATIKOVÝ KLIN Z MINERÁLNEJ VLNY $100 \times 100 \mathrm{~mm}$ UKONČOVACIA LIŠTA S ODKVAPNICOU S VÝZTUŽNOU TKANINOU
RAMICKÝ PÁSIK V SKLONE 15°

ŠROUBOVACIA HMOŽDINKA S OCELOVÝM TŔŇOM MONTÁŽ CEZ ARMOVACIU TKANINU, 300 mm HLBOKÁ SPÁRA PRE VYTVORENIE ODKVAPNICE ZÁSOBNÍK NA ROLETY POLYURETANOVÝ MONTÁŽNY PROFIL, $\lambda=0,022$ OKENNÝ PROFIL S PRIZNANOU ODKVAPNICOU S VÝZTUŽNOU TKANINOU PAROTESNÁ PÁSKA
SÁDROVÁ OMIETKA 10 mm

KERAMICKÁ PARAPETNÁ DOSKA $160 \times 105 \times 15 \mathrm{~mm}$, GLAZÚRA ŠEDOMODRÁ ZAKLADACIA MALTA, SUCHÁ ZMES, 10MPa POPLASTOVANÁ LIŠTA MECHANICKY KOTVENÁ PRE NATAVENIE FÓLIE
PLASTOVÝ ŽLAB S ROŠTOM $118 \times 100 \times 1000 \mathrm{~mm}$ NA GUMOVEJ PODLOŽKE, S VOL'NÝM ODTOKOM DREVENÉ LATE $4000 \times 140 \times 28 \mathrm{~mm}$, POVRCH HLADKÝ, SIBÍRSKY MODRÍN, NÁTER TERASOVÝM OLEJOM GUMOVÁ TERASOVÁ LIŠTA $30 \times 7 \times 700 \mathrm{~mm}$ PODKLADNÝ DREVENÝ RÁM $60 \times 40 \mathrm{~mm}$ á 500 mm , MODRÍN KOTVENIE NEREZOVÝMI ZÁPUSTNÝMI SKRUTKAMI 60 mm

PVC-P OCHRANNÁ FÓLIA 1,2mm ANTRACIT S POCHÔDZNOU ÚPRAVOU VYZTUŽENÁ POLYESTEROVOU TKANINOU

PVC-P HYDROIZOLAČNÁ FÓLIA $1,8 \mathrm{~mm}$ ŠEDÁ MECHANICKY KOTVENÁ A LEPENÁ K PODKLADU VYZTUŽENÁ POLYESTEROVOU TKANINOU

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný
DRUŽSTVO
NOVŠIE DVORY
ARCHITEKTONICKO- ČASŤ STAVEBNÉ RIEŠENIE
VÝKRES

DETAIL

 ATIKY TERASY 2| D.1.2.D | ČÍSLO |
| :---: | ---: |
| $1: 10$ | MIERKA |
| $2 \times A 4$ | FORMÁT |
| 04.04 .2024 | DÁTUM |

POLYKARBONÁTOVÁ KUPOLA PRIEHL'ADNÁ
RIEČNE KAMENIVO FRAKCIE 12/32 KAČÍRKOVÁ LIŠTA NEREZOVÁ S DRENÁŽNYMI OTVORMI, h=100mm, VOLNE POLOŽENÁ
EXTENZÍVNY STREŠNÝ SUBSTRÁT $50-100 \mathrm{~mm}$ IZOLAČNÁ VEGETAČNÁ DOSKA Z MINERÁLNEJ VLNY 50 mm DRENÁŽNA NOPOVÁ FÓLIA 20 mm MODIF. ASFALTOVÝ PÁS 4mm CELOPLOŠNE NATAVENÝ S VÝZTUŽOU PROT PRERASTANIU KORIENKOV

- PVC RÁM SVETLíKU MECHANICKY PRIKOTVENÝ NA SYSTÉMOVÝ NÁSTAVEC VYPLNENÝ TEPELNÝM IZOLANTOM
- HYDROIZOLÁCIA DOTIAHNUTÁ NA RÁM SVETLÍKU SPODNÁ VRSTVA MECHANICKY PRIKOTVENÁ

PVC NÁSTAVEC S PRÍRUBOU MECHANICKY KOTVENÝ DO ŽB. KONŠTRUKCIE VYPLNENÝ TEPELNÝM IZOLANTOM

DOSKY Z EXPAND. POLYSTYRÉNU S NAKAŠíROVANÝM ASFALTOVÝM PÁSOM $3000 \times 1000 \times 100 \mathrm{~mm}, \lambda=0,035$

DOSKY Z EXPAND. POLYSTYRÉNU ZREZANÉ DO POŽADOVANÉHO SKLONU PODL'A PD $1000 \times 500 \times 150 \mathrm{~mm}, \lambda=0,035$

POISTNÝ MODIF. ASFALTOVÝ PÁS 4mm natavený na Žb. KonšTRUKciu OPATRENÚ PENETRAČNÝM ASF. NÁTEROM

VÁPENNÁ OMIETKA 10 mm INTERIÉROVÁ MAL'BA + PENETRÁCIA

- ASFALTOVÁ MANŽETA S PRESAHOM natavená na poistnú hydroizoláciu
- DOSKA Z EXPAND. POLYSTYRÉNU 15mm LEPENÁ MONTÁŽNYM LEPIDLOM NA NÁSTAVEC RÁMU SVETLÍKU
ELEKTRICKÁ OHRIEVACIA ROHOŽ, $70 \mathrm{~W} / \mathrm{m}^{2}$ PO OBVODE OTVORU

CEMENTOVLÁKNITÁ DOSKA $12,5 \mathrm{~mm}$ OMIETNUTÁ SÁDROVOU OMIETKOU 10 mm

- POLYETYLÉNOVÁ PAROTESNÁ FÓLIA MECHANICKY KOTVENÁ

UKONČOVACIA LIŠTA Z ELOX. HLINÍKU 60x30mm MECHANICKY KOTVENÁ, VZOR DUB SVETLÝ
fakulta

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný
PROJEKT
DRUŽSTVO
NOVŠIE DVORY

ARCHITEKTONICKO-
STAVEBNÉ RIEŠENIE

DETAIL
VÝLEZU NA STRECHU

D.1.2.G	ČÍSLO
$1: 10$	MIERKA
$2 \times A 4$	FORMÁT
02.03 .2024	DÁTUM

D.2.1 Technická správa

$\begin{aligned} & \text { D.2.1.1 } \\ & \text { D.2.1.2 } \end{aligned}$	Charakteristika stavby	
		né podmienky
	D.2.1.2.1	Základové pomery
	D.2.1.2.2	Snehová oblast'
	D.2.1.2.3	Veterná oblast'
	D.2.1.2.4	Užitné zataženia

D.2.1.3 Charakteristika konštrukcií

D.2.1.3.1	Základové konštrukcie
D.2.1.3.2	Vertikálne konštrukcie
D.2.1.3.3	Horizontálne konštrukcie
D.2.1.3.4	Ztužujúce konštrukcie

D.2.1.4 Použitá literatúra a normy
D.2.2 Statický posudok
D.2.2.1 Návrh a posúdenie železobet. obojsmerne vyztužene stropnej dosky nad 2NP
D.2.2.2 Návrh a posúdenie železobet. skrytého prievlaku nad 2NP
D.2.2.3 Návrh a posúdenie železobet. priznaného prievlaku nad 2NP
D.2.2.4 Návrh a posúdenie železobet. stípu v 3PP
D.2.3 Výkresová čast
D.2.3.1 Výkres tvaru železobet. stropnej konštrukcie nad 2 NP
D.2.3.2 Výkres tvaru železobet. stropnej konštrukcie nad 1PP
D.2.3.3a/b Výkres tvaru a výztuže priznaného prievlaku nad 2NP
D.2.3.4 Výkres tvaru a výztuže železobet. stípu v 3PP

D.2.1 Technická správa

Riešený bytový dom sa nachádza v Prahe, presnejšie v mestskej časti Praha 4 - Lhotka Novovzniknutá parcela, ktorú si družstvo zakúpilo je umiestnená v prevažne obytnom bloku, ktorý bude mat' poloverejný priechodný vnútroblok. Nadmorská vy̌ška parcely sa pohybuje medzi 303 až 304 m.n.m (b.p.v) a klesá smerom na sever. Fasády sú orientované na východ (námestie) a na západ (vnútroblok), zo severu aj z juhu bude stavba susedit' s d'alśimi bytovými domami. Hlavný vstup do objektu je z námestia, ved'ajší z vnútrobloku poprípade z hromadných garáží. Stavba má 7 nadzemných a 3 podzemné podlažia. Objekt má obdížnikový pôdorys $18 \times 21,2 \mathrm{~m}$. Siedme nadzemné podlažie je ustúpené a nachádza sa tu prevádzková strecha. Strecha objektu je plochá so substrátom a extenzívnou zeleňou.
D.2.1.2 Vstupné podmienky

D.2.1.2.1 Základové pomery

Návrh základových konštrukcií musí rešpektovat́ zistenia z hydrogeologického prieskumu , ktoré hovoria, že hladina podzemnej vody bola narazená v híbke cca 8 metrov. Základová spára sa nachádza v híbke 11,53 metra (11,13 až $11,93 \mathrm{~m}, \mathrm{z}$ dôvodu sklonu nivelety vozovky v podzemných garážach, tzn. 3,1 až $3,9 \mathrm{~m}$ pod hladinou spodnej vody). Kedže je v híbke základovej spáry nestabilné podložie, a to konrétne íl, musia byṫ základy opatrené mikropilotami, ktoré ukotvia spodnú stavbu do bridlice narazenej v híbke 12 m . Toto opatrenie slúži aj ako prevencia vyplavenia stavby tlakovou vodou.
D.2.1.2.2

Snehová oblas
Objekt sa nachádza na území, ktoré spadá do snehovej oblasti l.

Snehová oblast' l.	\mathbf{s}_{k}	0,7	$\mathrm{kN} . \mathrm{m}^{-2}$

D.2.1.2.3 Veterná oblast

Objekt sa nachádza na území, ktoré spadá do veternej oblasti I.

Veterná oblast' I.	$\mathbf{v}_{\mathrm{b}, 0}$	22,5	$\mathrm{~m} . \mathrm{s}^{-1}$

D.2.1.2.4 Užitné zat'aženia

V objekte sa nachádzajú tri typy plôch z hl’adiska užitného zataženia:

A - Obytné plochy	\mathbf{q}_{k}	2,0	$\mathrm{kN} \cdot \mathrm{m}^{-2}$
D - Obchodné plochy	\mathbf{q}_{k}	4,0	$\mathrm{kN} \cdot \mathrm{m}^{-2}$
F - Parkovacie plochy $\leq 30 \mathrm{kN}$	\mathbf{q}_{k}	2,5	$\mathrm{kN} \cdot \mathrm{m}^{-2}$
H - Neprístupné strechy	\mathbf{q}_{k}	1,0	$\mathrm{kN} \cdot \mathrm{m}^{-2}$

Nosné konštrukcie stavby sú navrhnuté železobetónové monolitické. Konštrukčný princíp stavby je priečny stenový systém, ktorý je doplnený fasádnymi stenami, slúžiacimi ako pozdížne stužujúci prvok. Konštrukcie budú zhotovené z betónu C45/55 a z oceli B500.

D.2.1.3.1

Základové konštrukcie
Základová konštrukcia je riešená ako železobetónová základová doska v 5% pozdížnom sklone, má projektovanú hrúbku 800 mm , založená je na podkladnom betóne o hrúbke 150 mm , na ktorý bude nanesený asfaltový penetračný náter a celoplošne teplom natavená hydroizolácia z dvoch modifikovaných asfaltových pásov po 4 mm . Na asfaltové pásy bude ešte pridaná ochranná vrstva proti mechanickému poškodeniu vo forme betónovej mazaniny silnej 50 mm vyztuženej kari sietou s okom 100x100 mm. Ked'že je v híbke základovej spary nestabilne podložie, musia byṫ základy opatrené mikropilotami. Mikropiloty sú opatrené povrázkou. Od vedl'ajších objektov, sú základová doska a ostatné monolitické konštrukcie v podzemí oddilatované a utesnené pomocou PVC-P waterstop dilatačných pásikov.

D.2.1.3.2 Vertikálne konštrukcie

Monolitické steny v nadzemných podlažiach majú silu 250 mm , doplnené sú medzibytovými plynosilikátovými priečkami o sile 250 mm . Monolitické steny v podzemných podlažiach majú silu 300 mm , monolitické stípy v podzemných podlažiach sú dimenzované na rozmery $300 \times 1000 \mathrm{~mm}$ so zaoblenou hranou o polomere 100 mm .

D.2.1.3.3
 Horizontálne konštrukcie

Monolitické stropné dosky sú navrhnuté o sile 200 mm , v nadzemných podlažiach sú väčšinou pnuté obojsmerne do skrytých či priznaných prievlakov, v podzemných podlažiach sú dosky pnuté zväčša jednosmerne do priznaných prievlakov.

D.2.1.3.4 Ztužujúce konštrukcie

Konštrukčný princíp budovy je priečny stenový systém, ktorý je v pozdížnom smere stužený obvodovými stenami a skrytými či priznanými prievlakmi.

D.2.1.3.5 Komunikácie

Schodiská v objekte sú vyrobené z prefabrikovaného železobetónu. Sú zložené z dvoch dielov (rameno a dve polovice podesty sú jeden diel) pnutých pozdížnym spôsobom a ulozených na ozub na nosnej konśtrukcii. Vytahová sachta je navrhnutá dvojstenová, vnútorná vrtstva je z monolitického železobetónu o sile 200 mm vonkajšia z plynosilikátových tvárnic o sile 250 mm , vrstvy sú od seba oddilatované tepelnou/akustickou izoláciou z minerálnej vlny o sile 40 mm .
D.2.1.4 Použitá literatúra a normy

ČSN EN 1990 ČSN EN 1991

ČSN EN 1992
D.2.2.1

Návrh a posúdenie železobetónovej obojsmerne vyztuženej stropnej dosky nad 3NP

STÁLE ZAŤAŽENIE STROPU V TYPICKOM PODLAŽí					
VRSTVA	$\mathrm{h}[\mathrm{m}]$	$\mathrm{g}\left[\mathrm{kN} . \mathrm{m}^{-3}\right]$	$\mathrm{g}_{\mathrm{k}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	Y_{g}	$\mathrm{g}_{\mathrm{d}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$
laminátová podlaha	0,007	-	0,057	1,35	0,077
podložka z penového polyetylénu	0,003	0,250	0,000	1,35	0,001
hobra zelená	0,005	3,000	0,015	1,35	0,020
betónová mazanina	0,055	20,00	1,100	1,35	1,485
expandovaný polystyrén	0,040	0,135	0,005	1,35	0,007
monolitický železobetón	0,200	25,00	5,000	1,35	6,750
sádrokartónový podhl'ad + late	0,040	-	0,150	1,35	0,202
sádrová omietka	0,010	11,50	0,115	1,35	0,155
CELKOVÉ STÁLE ZAŤAŽENIE		Σ_{k}	6,442	Σ_{d}	8,697

PREMENNÉ ZAŤAŽENIE STROPU V TYPICKOM PODLAŽí

ZDROJ	KATEGÓRIA	$\mathrm{q}_{\mathrm{k}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	q_{q}	$\mathrm{q}_{\mathrm{d}}\left[\mathrm{kN} \cdot \mathrm{m}^{-2}\right]$
užitné zat'aženie	A		2,000	1,50
zat'aženie od priečok	-	0,750	1,50	1,125
CELKOVÉ PREMENNÉ ZAŤAŽENIE	Σ_{k}	2,750	Σ_{d}	4,125

CELKOVÉ ZAŤAŽENIE STROPU V TYPICKOM PODLAŽí

ZAŤAŽENIE		$\mathbf{g}_{\mathbf{k}}+\mathbf{q}_{\mathbf{k}}$	$\mathbf{\gamma}$	$\mathbf{g}_{\mathbf{d}}+\mathbf{q}_{\mathbf{d}}$
celkové stále zat'aženie	g	6,442	1,35	8,697
celkové premenné zataženie	q	2,750	1,50	4,125
CELKOVÉ ZAŤAŽENIE	F_{k}	9,192	$\mathrm{~F}_{\mathrm{d}}$	12,822

I_{x}	5,6m
I_{y}	7,5m
n	0,746
a_{x}	0,0322
a_{y}	0,0056
$\mathrm{a}_{\mathrm{xvs}}$	-0,0737
$\mathrm{a}_{\mathrm{yvs}}$	-0,0280
β	0,0252
F_{d}	$12,822 \mathrm{kNm}{ }^{-2}$
h	200 mm
0	10 mm
d1	25 mm
c	20 mm
d	175 mm

MOMENTY NA DOSKE:

$M_{x}=a_{x} \cdot F_{d} \cdot l_{x}$
$M_{\mathrm{x}}=0,0322.12,822 \cdot 5,6^{2}$
$M_{\mathrm{x}}=12,9475 \mathrm{kNm}$
$M_{y}=a_{y} \cdot F_{d} \cdot I_{y}{ }^{2}$
$M_{y}=0,0056.12,822.7,5^{2}$ $M_{y}=4,0389 \mathbf{k N m}$
$M_{\text {xvs }}=a_{\text {xvs }} \cdot F_{d} \cdot l_{x}$ $M_{\text {xvs }}=-0,0737.12,822 \cdot 5,6^{2}$ $M_{\text {xvs }}=\mathbf{- 3 0 , 4 3 8 8} \mathrm{kNm}$
$M_{y v s}=a_{y v s} \cdot F_{d} \cdot l_{x}^{2}$ $M_{\text {yvs }}=-0,0280 \cdot 12,822 \cdot 5,6^{2}$ $M_{\text {yvs }}=\mathbf{- 2 0 , 1 9 4 6} \mathrm{kNm}$

$h=1,1\left(l_{x}+l_{y}\right) / 75$
$h=1,1(5,6+7,5) / 75$
$h=0,192 \mathrm{~m}$ 》 $h=0,2 \mathrm{~m}$
$d_{1}=c+\delta / 2$
$d_{1}=20+10 / 2$
$d_{1}=25 \mathrm{~mm}$
$\mathbf{d}=\mathrm{h}-\mathrm{d}_{1}$
$d=0,2-0,025$
d $=\mathbf{0 , 1 7 5} \mathbf{m}$
$f_{c d}=f_{c k} / Y_{c}$
$f_{c d}=45 / 1,5$
$\mathrm{f}_{\mathrm{cd}}=\mathbf{3 0} \mathrm{MPa}$
$f_{y d}=f_{y k} / Y_{y}$
$f_{y d}=500 / 1,15$
$f_{y d}=434,78 \mathrm{MPa}$

NÁVRH VẎZTUŽE DOSKY $\left(M_{x}\right):$

$\mu=M_{x} / b . d^{2} . f_{c d}$
$\mu=12,9475 / 1.0,175^{2} .30000$
$\mu=0,0141$ 》 $\omega=0,0101$
$A_{s, \text { min }}=\omega . b . d . a .\left(f_{c d} / f_{y d}\right)$
$A_{s, \text { min }}=0,0101.1000 .175 .1 .(30 / 434,78)$
$A_{s, \text { min }}=121,96 \mathrm{~mm}^{2}$ » $A_{s}=271 \mathrm{~mm}^{2}$ à 290 mm

POSÚDENIE VÝZTUŽE DOSKY（ M_{x} ）：

$p(d)=A_{s} / b . d>\rho_{\text {min }}$
$\rho(d)=0,000271 / 1.0,175$
$\rho(d)=0,00155>0,0015$＂vyhovuje
$\rho(\mathrm{h})=\mathrm{A}_{\mathrm{s}} / \mathrm{b} . \mathrm{h}<\mathrm{P}_{\text {max }}$
$\rho(h)=0,000271 / 1.0,2$
$\rho(h)=0,00135<0,04$
＂vyhovuje
z $=0,9 . d$
$z=0,9.0,175$
z $=0,1575$
$M_{R d x}=A_{s} \cdot f_{y d} \cdot z>M_{x}$
$M_{\text {Rdx }}=0,000271.434782 .0,1575$
$M_{\text {Rdx }}=18,5575>12,9475$＂vyhovuje

\mathbf{I}_{x}	5,6	m
I_{y}	7,5	m
\mathbf{n}	0,746	-
\mathbf{f}_{ck}	45	MPa
\mathbf{f}_{cd}	30	MPa
\mathbf{f}_{yk}	500	MPa
\mathbf{f}_{yd}	434,78	MPa
$\boldsymbol{\beta}$	0,0252	-
\mathbf{F}_{d}	12,822	kNm
\mathbf{h}	200	mm
$\mathbf{0}$	10	mm
\mathbf{d}_{1}	25	mm
\mathbf{c}	20	mm
\mathbf{d}	175	mm
\mathbf{M}_{x}	12,9475	kNm
\mathbf{M}_{y}	4,0389	kNm
$\mathbf{M}_{\mathrm{xvs}}$	$-30,4388$	kNm
$\mathbf{M}_{\mathrm{yvs}}$	$-20,1946$	kNm

NÁVRH VÝZTUŽE DOSKY $\left(M_{y}\right)$ ：

$\mu=M_{y} / b \cdot d^{2} . f_{c d}$
$\mu=4,0389 / 1.0,175^{2} .30000$
$\mu=0,0044$ 》 $\omega=0,0101$
$A_{s, \text { min }}=\omega . b . d . a .\left(f_{c d} / f_{y d}\right)$
$A_{s, \min }=0,0101.1000 .175 .1 .(30 / 434,78)$
$A_{s, \text { min }}=121,96 \mathrm{~mm}^{2}$ » $A_{s}=271 \mathrm{~mm}^{2}$ à 290 mm

POSÚDENIE VẎZTUŽE DOSKY（ M_{y} ）：

$\rho(d)=A_{s} / b . d>\rho_{\min }$
$\rho(d)=0,000271 / 1.0,175$
$\rho(d)=0,00155>0,0015 \quad$ " vyhovuje
$\rho(h)=A_{s} / b . h<\rho_{\max }$
$\rho(h)=0,000271 / 1.0,2$
$\rho(h)=0,00135<0,04 \quad$ " vyhovuje

$$
\begin{aligned}
& z=0,9 \cdot d \\
& z=0,9 \cdot 0,175 \\
& z=0,1575
\end{aligned}
$$

$M_{\text {Rdy }}=A_{s} \cdot f_{y d} \cdot z>M_{y}$
$M_{\text {Rdy }}=0,000271$ ． 434782 ．0，1575
$M_{\text {Rdy }}=18,5575$＞4，0389＂vyhovuje

NÁVRH VẎZTUŽE DOSKY（ $\mathrm{M}_{\mathrm{xvs}}$ ）：

$\mu=M_{\text {xvs }} / b . d^{2} . f_{\text {cd }}$
$\mu=30,4388 / 1.0,175^{2} .30000$
$\mu=0,0331$ » $\omega=0,0305$
$A_{s, \text { min }}=\omega . b . d . a .\left(f_{c d} / f_{y d}\right)$
$A_{s, \text { min }}=0,0305 \cdot 1000 \cdot 175 \cdot 1 \cdot(30 / 434,78)$
$A_{s, \text { min }}=368,29 \mathrm{~mm}^{2}$ 》 $A_{s}=449 \mathrm{~mm}^{2}$ à 175 mm
POSÚDENIE VY̌ZTUŽE DOSKY（ M_{xv} ）：
$\rho(d)=A_{s} / b . d>\rho_{\text {min }}$
$\rho(d)=0,000393 / 1 \cdot 0,175$
$\rho(d)=0,00224>0,0015$＂vyhovuje
$\rho(h)=A_{s} / b . h<p_{\text {max }}$
$\rho(h)=A_{s} / b \cdot h<\rho_{\text {max }}$
$\rho(h)=0,000393 / 1.0,2$
$\rho(h)=0,00196<0,04$＂vyhovuje
$z=0,9 . d$
$z=0,9.0,175$
$z=0,1575$
$M_{\text {Rdxvs }}=A_{s} \cdot f_{y d} \cdot z>M_{x v s}$
$M_{\text {Rdxvs }}=0,000449$ ． 434782 ．0，1575
$M_{\text {Rdxvs }}=30,7467$＞ 30,4388 ＂vyhovuje

NÁVRH VẎZTUŽE DOSKY（ $\mathrm{M}_{\mathrm{yvs}}$ ）：

$$
\begin{aligned}
& \mu=M_{\text {yvs }} / b \cdot d^{2} \cdot f_{c d} \\
& \mu=20,1946 / 1 \cdot 0,175^{2} .30000 \\
& \mu=0,0219 \text { " } \omega=0,0202
\end{aligned}
$$

$A_{s, \text { min }}=\omega . b . d . a .\left(f_{c d} / f_{y d}\right)$
$A_{\text {s，min }}=0,0202.1000 .175 \cdot 1 .(30 / 434,78)$
$A_{s, \text { min }}=243,92 \mathrm{~mm}^{2}$ » $A_{s}=302 \mathrm{~mm}^{2}$ à 260 mm
POSÚDENIE VÝZTUŽE DOSKY（ $\mathrm{M}_{\mathrm{yvs}}$ ）：
$\rho(d)=A_{s} / b . d>\rho_{\text {min }}$
$p(d)=0,000302 / 1.0,175$
$\rho(d)=0,00172>0,0015$＂vyhovuje
$\rho(\mathrm{h})=\mathrm{A}_{\mathrm{s}} / \mathrm{b} . \mathrm{h}<\boldsymbol{\rho}_{\text {max }}$
$\rho(h)=0,000302 / 1.0,2$
$\rho(h)=0,00151<0,04 \quad$＂vyhovuje

$$
\begin{aligned}
& z=0,9 \cdot d \\
& z=0,9 \cdot 0,175 \\
& z=0,1575
\end{aligned}
$$

$M_{\text {Rdyvs }}=A_{s} \cdot f_{y d} \cdot z>M_{y v s}$
$M_{\text {Rdyvs }}=0,000302 \cdot 434782.0,1575$
$M_{\text {Rdyvs }}=20,6804>20,1946$＂vyhovuje

Riešený skrytý prievlak sa nachádza nad miestnostou N2．1．02．Tento prievlak posudzu－ jem ako staticky neurčitý，obojstranne votknutý do železobetónových nosných stien．Ked＇že má riešený prievlak iba jedno pole，bude spočítaný len jeden zatažovací stav pre ohybový moment． Vzhl＇adom na to，že ide o skrytý prievlak，jeho vlastná váha je započítaná v konštrukcii stropu．

CELKOVÉ PLOŠNÉ ZAŤAŽENIE SKRYTÉHO PRIEVLAKU NAD 3NP					
ZAŤAŽENIE		$\mathbf{g}_{\mathrm{k}}+\mathbf{q}_{\mathrm{k}}$	Y	$\mathbf{g}_{\mathrm{d}}+\mathbf{q}_{\mathrm{d}}$	
celkové stále zaťaženie od stropu	g	6,442	1,35	8,697	
celkové premenné zat＇aženie od stropu	q	2,750	1,50	4,125	
CELKOVÉ PLOŠNÉ ZAŤAŽENIE $\quad\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	F_{k}	9,192	$\mathrm{~F}_{\mathrm{d}}$	12,822	

PREPOČET NA LínIovÉ Zat̃aZ̃enie：

	$b=l / 12 \sim l / 8$
$Z P=(4,95 \cdot 7,5) / 2+(4,95 \cdot 5,9) / 2$	$b=433 \sim 650$
$Z P=33,165 \mathrm{~m}^{2}$	$b=650 \mathrm{~mm}$
$F=12,822.33,165$	
$F=425,2416 \mathrm{kN}$	$F_{1}=425,2416 / 4,95$
	$F_{1}=85,9074 \mathrm{kN} / \mathrm{m}$
	D．2－3b

\mathbf{l}	4,95	m
\mathbf{h}	0,20	m
\mathbf{b}	0,65	m
zš		
zš $_{\mathbf{2}}$	3,75	m

$M_{\text {a }}=-\left(F_{1} \cdot l^{2}\right) / 12$	$\mathrm{d}_{1}=\mathrm{c}+\mathrm{O} / 2$
$M_{a}=-\left(85,9074.4,95^{2}\right) / 12$	$d_{1}=20+22 / 2$
$\mathrm{M}_{\mathrm{a}}=\mathbf{- 1 7 5 , 4 1 2 2 ~} \mathrm{kNm}$	$\mathrm{d}_{1}=31 \mathrm{~mm}$
$M_{s}=-\left(F_{1} \cdot l^{2}\right) / 24$	$\mathrm{d}=\mathrm{h}-\mathrm{d}_{1}$
$M_{s}=-\left(85,9074 \cdot 4,95^{2}\right) / 24$	$d=0,2-0,031$
$M_{\text {s }}=87,7060 \mathrm{kNm}$	$\mathrm{d}=0,169 \mathrm{~m}$
	$\begin{aligned} & f_{c d}=f_{c k} / Y_{c} \\ & f_{c d}=45 / 1,5 \end{aligned}$
	$\mathrm{f}_{\mathrm{cd}}=30 \mathrm{MPa}$
	$\begin{aligned} f_{y d} & =f_{y k} / Y_{y} \\ f_{y d} & =500 / 1,15 \end{aligned}$
	$\mathrm{f}_{\mathrm{yd}}=434,78 \mathrm{MPa}$

NÁVRH VÝZTUŽE PRIEVLAKU $\left(\mathrm{M}_{\mathrm{a}}\right):$
$\boldsymbol{\mu}=\mathrm{M}_{\mathrm{a}} / \mathrm{b} . \mathrm{d}^{2} . \mathrm{f}_{\mathrm{cd}}$
$\mu=175,4122 / 0,65.0,169^{2} .30000$
$\mu=0,3149$ 》 $\omega=0,3869$
$A_{s, \text { min }}=$ w．b．d．a．$\left(f_{c d} / f_{y d}\right)$
$A_{s, \min }=0,2263.650 .169 .1$ ．$(30 / 434,78)$
$A_{s, \text { min }}=2932,58 \mathrm{~mm}^{2}$ » $A_{s}=3041 \mathrm{~mm}^{2}$（8x022）
POSÚDENIE VÝZTUŽE PRIEVLAKU $\left(\mathrm{M}_{\mathrm{a}}\right)$ ：
$\rho(d)=A_{s} / b . d>\rho_{\text {min }}$
$\rho(d)=0,003041 / 0,65 \cdot 0,169$
$\rho(d)=0,0277>0,0015$＂vyhovuje
$\rho(h)=A_{s} / b . h<\rho_{\text {max }}$
$\rho(h)=0,003041 / 0,65 \cdot 0,2$
$\rho(h)=0,0234<0,04 \quad$＂vyhovuje
z＝0，9．d
z $=0,9.0,169$
z $=0,1521$
$M_{\text {Rda }}=A_{s} \cdot f_{y d} \cdot z>M_{a}$
$M_{\text {Rda }}=0,003041$ ． 434782 ．0，1521
$M_{\text {Rda }}=-201,1024$＞－175，4122＂vyhovuje

\mathbf{l}	4,95	m
\mathbf{h}	0,20	m
\mathbf{b}	0,65	m
\mathbf{f}_{ck}	45	MPa
\mathbf{f}_{cd}	30	MPa
\mathbf{f}_{yk}	500	MPa
\mathbf{f}_{yd}	434,78	MPa
\mathbf{c}	20	mm
\mathbf{d}	22	mm
\mathbf{o}_{a}	8	mm
$\mathbf{d}_{\mathbf{1}}$	31	mm
\mathbf{d}	169	mm

$f_{y d}=500 / 1,15$
$\mathrm{f}_{\mathrm{yd}}=434,78 \mathrm{MPa}$

Riešený priznaný prievlak posudzujem ako staticky neurčitý，obojstranne votknutý do železobetónových nosných stien s jedným polom pre ohybový moment．

| CELKOVÉ PLOŠNÉ ZAŤAŽENIE PRIZNANÉHO PRIEVLAKU NAD 3NP | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| ZAŤAŽENIE | | $\mathbf{g}_{\mathrm{k}}+\mathbf{q}_{\mathrm{k}}$ | $\mathrm{\gamma}$ | $\mathbf{g}_{\mathrm{d}}+\mathbf{q}_{\mathrm{d}}$ |
| celkové stále zat＇aženie od stropu | g | 6,442 | 1,35 | 8,697 |
| celkové premenné zat＇aženie od stropu | q | 2,750 | 1,50 | 4,125 |
| CELKOVÉ PLOŠNÉ ZAŤAŽENIE $\quad\left[k N . \mathrm{m}^{-2}\right]$ | F_{k} | 9,192 | $\mathrm{~F}_{\mathrm{d}}$ | 12,822 |

PREPOČET NA LİNIOVÉ ZAŤAŽENIE：

$\mathrm{ZP}=(5,6 \cdot 7,2) / 2+(6,75 \cdot 7,2) / 2$
$Z P=44,46 \mathrm{~m}^{2}$
$F=12,822.44,46$
F $=570,0661 \mathrm{kN}$
$F_{1}=570,0661 / 7,2$
$F_{1}=79,1785 \mathrm{kN} / \mathrm{m}$

MOMENTY NA PRIEVLAKU：
$M_{a}=-\left(F_{1} \cdot l^{2}\right) / 12$
$M_{a}=-\left(79,1785 \cdot 7,2^{2}\right) / 12$
$M_{a}=-342,0511 \mathrm{kNm}$
$M_{s}=-\left(F_{1} . l^{2}\right) / 24$
$M_{s}=-\left(79,1785 \cdot 7,2^{2}\right) / 24$
$M_{s}=171,0256 \mathrm{kNm}$

NÁVRH VÝZTUŽE PRIEVLAKU $\left(M_{a}\right):$
$\mu=M_{a} / b . d^{2} . f_{c d}$
$\mu=342,0511 / 0,25.0,569^{2} .30000$
$\mu=0,1408$ 》 $\omega=0,1518$
$A_{s, \text { min }}=\omega . b . d . a .\left(f_{c d} / f_{y d}\right)$
$A_{s, \text { min }}=0,1518.250 .569 .1 .(30 / 434,78)$
$A_{s, \text { min }}=1489,96 \mathrm{~mm}^{2}$ 》 $A_{s}=1901 \mathrm{~mm}^{2}$（5x022）
z $=0,9 . d$
$z=0,9.0,569$
z $=0,5121$
$h=l / 12 \sim l / 8$
$h=600 \sim 900$
$h=600 \mathrm{~mm}$
b $=0,4 \mathrm{~h} \sim 0,5 \mathrm{~h}$
b $=240 \sim 300$
b $=\mathbf{2 5 0} \mathbf{~ m m}$
$d_{1}=c+0 / 2$
$d_{1}=20+22 / 2$
$d_{1}=31 \mathrm{~mm}$
$\mathrm{d}=\mathrm{h}-\mathrm{d}_{1}$
$d=0,6-0,031$
$\mathrm{d}=0,569 \mathrm{~m}$
$f_{c d}=f_{c k} / V_{c}$
$f_{c d}=45 / 1,5$

\mathbf{l}	7,200	m
h	0,600	m
\mathbf{b}	0,250	m
$\mathbf{z \mathbf { s } _ { 1 }}$	2,800	m
zšs $_{2}$	3,375	m

f_{ck}	45	MPa
f_{cd}	30	MPa
f_{yk}	500	MPa
f_{yd}	434,78	MPa
c	20	mm
o	22	mm
o_{r}	8	mm
$\mathrm{~d}_{1}$	31	mm
d	569	mm

$f_{\mathrm{cd}}=\mathbf{3 0} \mathrm{MPa}$
$f_{y d}=f_{y k} / Y_{y}$
$\mathrm{f}_{\mathrm{yd}}=500 / 1,15$
$f_{y d}=434,78 \mathrm{MPa}$
POSÚDENIE VÝZTUŽE PRIEVLAKU（ M_{a} ）：
$\rho(d)=A_{s} / b . d>\rho_{\text {min }}$
$\rho(d)=0,001901 / 0,25.0,569$
$\rho(d)=0,0133>0,0015$＂vyhovuje
$\rho(\mathrm{h})=\mathrm{A}_{\mathrm{s}} / \mathrm{b} . \mathrm{h}<\boldsymbol{\rho}_{\max }$
$\rho(h)=0,001901 / 0,25 \cdot 0,6$
$\rho(h)=0,0127<0,04 \quad$＂vyhovuje
$M_{\text {Rda }}=A_{s} \cdot f_{y d} \cdot z>M_{a}$
$M_{\text {Rda }}=0,001901.434782 .0,5121$
$M_{\text {Rda }}=-423,2612$＞$-342,0511$ » vyhovuje

NÁVRH VÝZTUŽE PRIEVLAKU (M_{s}):

POSÚDENIE VÝZTUŽE PRIEVLAKU $\left(M_{s}\right)$

$\mu=M_{s} / b . d^{2} . f_{c d}$
$\mu=171,0256 / 0,65.0,569^{2} .30000$
$\mu=0,0704 \geqslant \omega=0,0727$
$A_{s, \text { min }}=$ w.b.d.a. $\left(f_{c d} / f_{y d}\right)$
$A_{\text {s, min }}=0,0727.250 .569 .1$. (30/434,78)
$A_{s, \text { min }}=713,57 \mathrm{~mm}^{2}$ » $A_{s}=1140 \mathrm{~mm}^{2}(3 \times 022)$
z $=0,9 . d$
$\mathbf{z}=0,9.0,569$
$z=0,5121$
$\rho(d)=A_{s} / b . d>\rho_{\text {min }}$
$\rho(d)=0,00114 / 0,25 \cdot 0,569$
$\rho(d)=0,00801>0,0015$ " vyhovuje
$\rho(\mathrm{h})=\mathrm{A}_{\mathrm{s}} / \mathrm{b} . \mathrm{h}<\boldsymbol{\rho}_{\text {max }}$
$p(h)=0,00114 / 0,25 \cdot 0,6$
$\rho(h)=0,0076<0,04$ " vyhovuje
$M_{\text {Rds }}=A_{s} \cdot f_{y d} \cdot z>M_{s}$
$M_{\text {Rds }}=0,00114.434782 .0,5121$
$M_{\text {Rds }}=253,8231>171,0256$ " vyhovuje
D.2.2.4

Návrh a posúdenie železobetónového

 monolitického stípu v 3PPRiešený stĺp sa nachádza v priestore hromadných garáží v 3PP, kde prenáša zvislé zatazzenie cez základovú dosku do železobetónovej piloty, ktorá je votknutá do bridlicového podložia. Z nadzemných podlaží prenáša zataženie od železobetónových stropov a trámov, ktoré sú votknuté do železobetónovej steny na ose stípu.

STÁLE ZAŤAŽENIE STRECHY					
VRSTVA	h [m]	$\mathrm{g}\left[\mathrm{kN} . \mathrm{m}^{-3}\right]$	$\mathrm{g}_{\mathrm{k}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	Y_{g}	$\mathrm{g}_{\mathrm{d}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$
krycia vrstva zo substrátu	0,050	7,600	0,380	1,35	0,513
izolačné vegetačné dosky	0,050	0,800	0,040	1,35	0,054
nopová fólia s nakašírovanou textíliou	0,010	-	0,006	1,35	0,008
modifikované asfaltové pásy	0,008	-	0,034	1,35	0,046
expandovaný polystyrén	0,250	0,280	0,070	1,35	0,095
modifikovaný asfaltový pás	0,004	-	0,017	1,35	0,023
monolitický železobetón	0,200	25,00	5,000	1,35	6,750
vápenocementová omietka	0,013	16,00	0,208	1,35	0,281
vápenná štuková omietka	0,002	15,80	0,032	1,35	0,043
CELKOVÉ STÁLE ZAŤAŽENIE		Σ_{k}	5,787	$\Sigma_{\text {d }}$	7,813
PREMENNÉ ZAṪAŻENIE STRECHY					
ZDROJ		GÓRIA	$\mathrm{q}_{\mathrm{k}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	$\mathrm{Y}_{\text {q }}$	$\mathrm{q}_{\mathrm{d}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$
užitné zataženie		H	1,000	1,50	1,500
zataženie snehom		I.	0,700	1,50	1,050
CELKOVÉ PREMENNÉ ZAŤAŽENIE		Σ_{k}	1,700	$\Sigma_{\text {d }}$	2,550
CELKOVÉ ZAṪAŽENIE STRECHY					
ZAŤAŽENIE			$\mathrm{g}_{\mathrm{k}}+\mathrm{q}_{\mathrm{k}}$	Y	$\mathrm{g}_{\mathrm{d}}+\mathrm{q}_{\text {d }}$
celkové stále zat'aženie		g	5,787	1,35	7,813
celkové premenné zat'aženie		q	1,700	1,50	2,550
CELKOVÉ ZAŤAŽENIE		F_{k}	7,487	F_{d}	10,363

STÁLE ZAŤAŽENIE STROPU V PODZEMNOM PODLAŽí

VRSTVA	$\mathrm{h}[\mathrm{m}]$	$\mathrm{g}\left[\mathrm{kN} . \mathrm{m}^{-3}\right]$	$\mathrm{g}_{\mathrm{k}}\left[\mathrm{kN} \cdot \mathrm{m}^{-2}\right]$	Y_{g}	$\mathrm{g}_{\mathrm{d}}\left[\mathrm{kN} \cdot \mathrm{m}^{-2}\right]$
epoxidová stierka	0,001	-	0,015	1,35	0,020
samonivelačná cementová hmota	0,009	-	0,135	1,35	0,182
monolitický železobetón	0,200	25,00	5,000	1,35	6,750
CELKOVÉ STÁLE ZAŤAŽENIE		Σ_{k}	5,150	Σ_{d}	6,952

PREMENNÉ ZAŤAŽENIE STROPU V PODZEMNOM PODLAŽí

ZDROJ	KATEGÓRIA		$\mathrm{q}_{\mathrm{k}}\left[\mathrm{kN} \cdot \mathrm{m}^{-2}\right]$	Y_{q}	$\mathrm{q}_{\mathrm{d}}\left[\mathrm{kN} \cdot \mathrm{m}^{-2}\right]$
užitné zat'aženie	F		2,500	1,50	3,750
zat'aženie od priečok	-	0,750	1,50	1,125	
CELKOVÉ PREMENNÉ ZAŤ̌AŽENIE	Σ_{k}	3,250	Σ_{d}	4,875	

CELKOVÉ ZAŤAŽENIE STROPU V PODZEMNOM PODLAŽí

ZAŤAŽENIE		$\mathbf{g}_{\mathbf{k}}+\mathbf{q}_{\mathbf{k}}$	$\mathbf{\gamma}$	$\mathbf{g}_{\mathbf{d}}+\mathbf{q}_{\mathbf{d}}$
celkové stále zat'aženie	\mathbf{g}	5,150	1,35	6,952
celkové premenné zataženie	\mathbf{q}	3,250	1,50	4,875
CELKOVÉ ZAŤAŽENIE	F_{k}	8,400	$\mathrm{~F}_{\mathrm{d}}$	11,827

STȦLE ZAṪAŽENIE STROPU MEDZI 1NP A 1PP					
VRSTVA	h [m]	$\mathrm{g}\left[\mathrm{kN} . \mathrm{m}^{-3}\right]$	$\mathrm{g}_{\mathrm{k}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	$\gamma_{\text {g }}$	$\mathrm{g}_{\mathrm{d}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$
spekaná dlažba	0,008	-	0,179	1,35	0,242
cementové lepidlo	0,002	-	0,040	1,35	0,054
samonivelačná cementová hmota	0,010	-	0,150	1,35	0,202
betónová mazanina	0,050	20,00	1,100	1,35	1,485
expandovaný polystyrén	0,040	0,135	0,005	1,35	0,007
monolitický železobetón	0,200	25,00	5,000	1,35	6,750
izolačné dosky z EPS granulátu	0,200	2,000	0,400	1,35	0,540
CELKOVÉ STÁLE ZAŤAŽENIE		Σ_{k}	6,874	$\Sigma_{\text {d }}$	9,280
PREMENNÉ ZAŤAŽENIE STROPU MEDZI 1NP A 1PP					
ZDROJ		GÓRIA	$\mathrm{q}_{\mathrm{k}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$	$\mathrm{Y}_{\text {q }}$	$\mathrm{q}_{\mathrm{d}}\left[\mathrm{kN} . \mathrm{m}^{-2}\right]$
užitné zaṫaženie		D	4,000	1,50	6,000
zatazǎenie od priečok		-	0,750	1,50	1,125
CELKOVÉ PREMENNÉ ZAṪAŽENIE		$\Sigma_{\text {k }}$	4,750	$\Sigma_{\text {d }}$	7,125
CELKOVÉ ZAṪAŽENIE STROPU MEDZI INP A 1PP					
ZAŤAŽENIE			$\mathrm{g}_{\mathrm{k}}+\mathrm{q}_{\mathrm{k}}$	Y	$\mathrm{g}_{\mathrm{d}}+\mathrm{q}_{\mathrm{d}}$
celkové stále zataženie		g	6,874	1,35	9,280
celkové premenné zataženie		q	4,750	1,50	7,125
CELKOVÉ ZAŤ̇ŻENIE		F_{k}	11,624	$\mathrm{F}_{\text {d }}$	16,405

VÝPOČET BODOVÉHO ZAŤAŽENIA NA PÄTU STL̇PU V 3PP OD VODOROVNÝCH KONŠTRUKCIÍ

ZDROJ ZAŤAŽENIA		TYP	$\mathrm{g}_{\mathrm{k}}+\mathrm{q}_{\mathrm{k}}$	Y	$\mathrm{g}_{\mathrm{d}}+\mathrm{q}_{\mathrm{d}}$	ZP	n. F_{b}	
		[kN.m²]	[kN.m²]		[m²]	[kN]		
$\stackrel{\cap}{\gtrless}$	celkové stále zataženie od stropu TNP		g	6,442	1,35	8,697	41,4	530,831
	celkové premenné zataženie od stropu TNP	q	2,750	1,50	4,125	$\times 6$		
	CELKOVÉ ZAŤAŽENIE Z TNP	$\mathrm{F}_{\mathrm{k}, \mathrm{TN} \mathrm{P}}$	9,192	$\mathrm{F}_{\mathrm{d}, \mathrm{TNP}}$	12,822	$\mathrm{F}_{\mathrm{b}, \mathrm{TNP}}$	3184,985	
을	celkové stále zatazazenie od stropu 1NP	g	6,874	1,35	9,280	41,4	679,167	
	celkové premenné zataženie od stropu 1NP	q	4,750	1,50	7,125		x1	
	CELKOVÉ ZAŤAŽENIE Z INP	$\mathrm{F}_{\mathrm{k}, \mathrm{INP}}$	11,624	$\mathrm{F}_{\mathrm{k}, 1 \mathrm{NP}}$	16,405	$\mathrm{F}_{\mathrm{b}, \mathrm{NP}}$	679,167	
$\dot{\sim}$	celkové stále zataženie od strechy	g	5,787	1,35	7,813	41,	429,028	
	celkové premenné zataženie od strechy	q	1,700	1,50	2,550		x1	
	CELKOVÉ ZAṪAŽENIE ZO STRECHY	$\mathrm{F}_{\mathrm{k}, \text { N } \mathrm{P}}$	7,487	$\mathrm{F}_{\mathrm{d}, 8 \mathrm{NP}}$	10,363	$\mathrm{F}_{\mathrm{b}, \mathrm{SNP}}$	429,028	
$\frac{\mathrm{n}}{\mathrm{n}} \mathrm{~F}$	celkové stále zat'aženie od stropu TPP	g	5,150	1,35	6,952	39,5	467,166	
	celkové premenné zataženie od stropu TPP	q	3,250	1,50	4,875		3x	
	CELKOVÉ ZAŤAŽENIE Z TPP	$\mathrm{F}_{\mathrm{k}, \text { TPP }}$	8,400	$\mathrm{F}_{\text {d,TPP }}$	11,827	$\mathrm{F}_{\mathrm{b}, \text { TPP }}$	1401,499	
CELKOVÉ ZAŤAŽENIE OD STROPOV A STRECHY						F_{b}	5694,679	

VÝPOČET BODOVÉHO ZAŤAŽENIA NA PÄTU STİPU V 3PP OD VLASTNEJ VÁHY KONŠTRUKCIÍ						
ZDROJ ZAŤAŽENIA		V	g	F	n	F_{b}
		[m^{3}]	[kN.m ${ }^{-3}$]	[kN]		[kN]
$\stackrel{\square}{2}$	vlastná váha železobetónových stien v TNP	4,690	25	117,250	x6	758,250
	vlastná váha železobetónových trámov v TNP	0,365		9,125		
을	vlastná váha železobetónových stien v 1NP	8,331	25	208,275	x1	271,400
	vlastná váha železobetónových trámov v 1NP	0,365		9,125		
$\stackrel{\text { n }}{1}$	vlastná váha železobetónových stípov v TPP	0,300	25	7,500	x3	49,875
	vlastná váha železobetónových trámov v TPP	0,365		9,125		
CELKOVÁ VLASTNÁ VÁHA PÔSOBIACA NA STĹP						1079,525

PREDBEŽNÝ NÁVRH ROZMEROV STL̇PU:

$A_{\text {min }}=F_{b} / 0,8 . f_{c d}$
$A_{\text {min }}=6774,204 / 0,8.30000$
$A_{\text {min }}=0,2822 \mathrm{~m}^{2}$ » $A_{\mathrm{c}}=0,3 \mathrm{~m}^{2}(300 \times 1000 \mathrm{~mm})$

NȦVRH VẎZTUŽE STL̇PU

[^0]POSÚDENIE VÝZTUŽE STL̇PU:
$A_{s}>0,003 . A_{c}$
$A_{s}>0,003.300000$
$A_{s}>900 \mathrm{~mm}^{2}$ " vyhovuje
$A_{s}<0,08 . A_{c}$
$\mathbf{A}_{s}<0,08.300000$
$A_{s}<24000 \mathrm{~mm}^{2}$ 》 vyhovuje
$F_{R d}=0,8 A_{c} \cdot f_{c d}+A_{s} \cdot f_{y d}>F_{b}$
$F_{\text {Rd }}=0,8.0,3.30000+0,001018.434782$
$F_{\text {Rd }}=7642,608>6774,204$ " vyhovuje

ATELIÉR

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
vedoucí
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý, Ph.D.
KONZULTANT
doc. Dr. Ing. Martin Pospišil, Ph.D
$\left.\begin{array}{cc|}\hline \text { Max Neradný } \\ \text { PROJEKT } \\ \text { DRUŽSTVO } \\ \text { NOVŠIE DVORY }\end{array}\right]$

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
vedoucí
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý, Ph.D.
KONZULTANT
doc. Dr. Ing. Martin Pospísil, Ph.D
AUTOR
Max Neradný

DRUŽSTVO NOVŠIE DVORY

KONŠTRUKČNÉ RIEŠENIE

VÝKRES TVARU STROPNE KONŠTRUKCIE NAD IPP

D.2.3.2	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
29.12 .2023	DÁTUM

BAKALÁRSKA PRÁCA

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDOUCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý, Ph.D.
KONZULTANT
doc. Dr. Ing. Martin Pospiśsil, Ph.D
AUTOR

Max Neradný

DRUŽSTVO NOVŠIE DVORY

KONŠTRUKČNÉ RIEŠENIE

VÝKRES TVARU A VẎZTUŽE PRIZNANÉHO TRÁMU NAD 2NP

D.2.3.3a	ČÍSLO
$1: 25$	MIERKA
$2 \times A 4$	FORMÁT
29.12 .2023	DÁTUM

D.3.1 Technická správa
D.3.1.1

D.3.1.1.1 Konštrukčný systém

D.3.1.2 Rozdelenie stavby na požiarne úseky
D.3.1.3 Požiarne riziko a stupeň požiarnej bezpečnosti
D.3.1.4 Požiarna odolnost' stavebných konštrukcií
D.3.1.5 Evakuácia a únikové cesty

D.3.1.5.1 Obsadenie objektu osobami
 D.3.1.5.2 Návrh a posúdenie únikových ciest

D.3.1.6 Požiarne nebezpečný priestor a odstupové vzdialenosti
D.3.1.7 Zabezpečenie stavby požiarnou vodou
D.3.1.8 Hasiace prístroje
D.3.1.9 Požiarno-bezpečnostné zariadenia
D.3.1.10 Hasenie požiaru a záchranné práce
D.3.1.11 Použitá literatúra a normy

D.3.2 Prílohy

D.3.3 Výkresová čast

D.3.3.1	Situácia		$1: 250$
D.3.3.2	Pôdorys	3PP	$1: 100$
D.3.3.3	Pôdorys	1NP	$1: 100$
D.3.3.4	Pôdorys	2NP	$1: 100$
D.3.3.5	Pôdorys	7NP	$1: 100$

D.3.1 Technická správa

Opis a umiestnenie stavby

Riešený bytový dom sa nachádza v Prahe, presnejšie v mestskej časti Praha 4 - Lhotka Novovzniknutá parcela, ktorú si družstvo zakúpilo, je umiestnená v prevažne obytnom bloku, ktorý bude mat' poloverejný priechodný vnútroblok. Nadmorská výška parcely sa pohybuje medzi 303 až 304 m.n.m (b.p.v) a klesá smerom na sever. Fasády sú orientované na východ (námestie) a na západ (vnútroblok), zo severu aj z juhu bude stavba susedit' s d'alšími bytovými domami. Hlavný vstup do objektu je z námestia, vedl'ajší z vnútrobloku poprípade z hromadných garáží. Stavba má 7 nadzemných a 3 podzemné podlažia. Objekt má obdížnikový pôdorys $18 \times 21,2 \mathrm{~m}$. Siedme nadzemné podlažie je ustúpené a nachádza sa tu prevádzková strecha. Strecha objektu je plochá so substrátom a extenzívnou zeleňou.

D.3.1.1.1 Konštrukčný systém

Nosné konštrukcie stavby sú navrhnuté železobetónové monolitické. Konštrukčný princíp stavby je priečny systém, ktorý je doplnený fasádnymi stenami, slúžiacimi ako pozdížne stužujúci prvok. Monolitické steny v nadzemných podlažiach majú silu 250 mm , doplnené sú medzibytovými plynosilikátovými priečkami o sile 250 mm . Monolitické steny v podzemných podlažiach majú silu 300 mm , monolitické stípy v podzemných podlažiach sú dimenzované na rozmery $250 \times 500 \mathrm{~mm}$ so zaoblenou hranou o $\mathrm{r}=100 \mathrm{~mm}$. Monolitické stropné dosky sú navrhnuté o sile 200 mm , sú väčšinou pnuté obojsmerne do skrytých prievlakov. Schodisko v únikovej ceste je z monolitického železobetónu a je pnuté pozdľ̌ne (podesta+rameno+podesta). Výtahova sachta je navrhnuta dvojstenova, vnutorna vrtstva je z monolitickeho zelezobetonu o sile 200 mm vonkajšia z plynosilikátových tvárnic o sile 250 mm , vrstvy sú od seba oddilatované tepelnou/akustickou izoláciou z minerálnej vlny o sile 40 mm .

D.3.1.2 Rozdelenie stavby na požiarne úseky

Podl'a normy ČSN 730833 je objekt klasifikovaný ako OB2 - budova pre bývanie. Stavba je rozdelená na 55 požiarnych úsekov, z toho 15 úsekov v podzemných podlažiach, 26 v nadzemných podlažiach, 12 šachiet a 2 chránené únikové cesty typu A. Všetky požiarne úseky sú od seba oddelené požiarne deliacimi konštrukciami, ktoré splňajú minimálne parametre požiarnej ochrany na základe jednotlivých stupňov požiarnej bezpečnosti. Všetky bytové jednotky v dome sú považované za samostatné požiarne úseky, rovnako všetky šachty. Specifické skupiny miestností v 7NP (spa, posilňovňa, upratovanie) sú spojené do samostatných požiarnych úsekov. Pivnice tvoria požiarne úseky po skupinách v množstve 3 miestností. Technické miestnosti, strojovne, a spoločný sklad na bicykle, lyže a kočíky tvoria samostatné požiarne úseky. Prenajímané priestory v 1NP tvoria samostatné požiarne úseky s vlastnými unikovými cestami priamo do exteriéru.

Priestory garáže na každom podlaží tvoria samostatný požiarny úsek, ktorý je od naväzujúcich garáží oddelený požiarnymi roletami. Požiarne riziko hromadných garáží je uvedené ako $\tau_{\mathrm{e}}=15 \mathrm{~min}$. (ekvivalentná doba trvania požiaru), čo platí pre všetky tri požiarne úseky s účelom parkovania.

V priloženej tabul'ke je výpis všetkých požiarnych úsekov v objekte rozdelený podl'a podlaží, v ktorých sa úseky nachádzajú. Tabul'ka ukazuje len hodnoty výpočtového požiarneho zat’aženia (p_{v}) a z toho vychádzajúci stupeň požiarnej bezpečnosti (SPB). Kompletná tabul'ka s celým výpočtom požiarneho rizika je priložená v časti D.3.2. Niektoré hodnoty požiarneho zat'aženia neboli získané výpočtom, namiesto toho bola použitá normová hodnota z prílohy B normy ČSN 73 0802. Konkrétne sa to týka pivníc, garáží, miestnosti pre bicykle, lyže a kočíky a všetkych bytov. Stupeñ požiarnej bezpečnosti pre instalaćné sachty, v ktorych sú vedene rozvody nehorl'avých látok v horl'avom potrubí je stanovený na II. SPB. Šachty výtahov v objektoch s výškou nad $22,5 \mathrm{~m}$ majú stanovený III. SPB.

	KÓD	ÚČEL ÚSEKU		p_{v}	SPB		KÓD	ÚČEL	EKU	p_{v}	SPB
	P3.1	hromadné garáže		7,4	II.	$\underset{\sim}{n}$	N4.1	byt 3+kk		45	III.
	P3.2	strojovňa výtahu		8,1	II.		N4.2	byt 2+kk		45	III.
	P3.3	bicykle, lyže, kočíky		15	II.		N4.3	byt 3+kk		45	III.
	P3.4	pivnice		45	III.		N4.4	byt 3+kk		45	III.
	P3.5	pivnice		45	III.	$\frac{0}{2}$	N5.1	byt 4+kk		45	III.
	P2.1	hromadné garáže		7,4	II.		N5.2	byt 2+kk		45	III.
	P2.2	technická miestnost'		8,1	II.		N5.3	byt 4+kk		45	III.
$\stackrel{0}{n}$	P2.3	strojovňa VZT garáže		8,3	II.	10	N6.1	byt 3+kk		45	III.
	P2.4	pivnice		45	III.		N6.2	byt 2+kk		45	III.
	P2.5	pivnice		45	III.		N6.3	byt 3+kk		45	III.
$\frac{0}{\mathrm{a}}$	P1.1	hromadné garáže		5	II.		N6.4	byt 3+kk		45	III.
	P1.2	technická miestnost'		7,8	II.	$\underset{\sim}{n}$	N7.1	posilňovňa		16	III.
	P1.3	strojovňa VZT CHÚC2		7,9	II.		N7.2	družstevn		45	III.
	P1.4	pivnice		45	III.		N7.3	sauna		25,7	III.
	P1.5	pivnice		45	III.		N7.4	upratovani		14,7	II.
$\underset{\underline{Z}}{\text { n }}$	N1.1	priestor na prenájom		35,3	III.		Š01	výtahová	P3/N7		III.
	N1.2	priestor na prenájom		33,7	III.		Š02	inštalačná	P1/N1		II.
	N1.3	odpadová miestnost'		13	II.		Š03	inštalačná	P1/N8		II.
$\underset{N}{0}$	N2.1	byt 3+kk		45	III.		Š04	inštalačná	P1/N8		II.
	N2.2	byt 2+kk		45	III.		Š05	inštalačná	P1/N8		II.
	N2.3	byt 3+kk		45	III.		Š06	inštalačná	P1/N8		II.
	N2.4	byt 3+kk		45	III.		Š07	inštalačná	P1/N8		II.
	N2.5	hala NÚC	N2.5/N7	7,5	II.		Š08	inštalačná	P1/N8		II.
$\underset{M}{n}$	N3.1	byt 4+kk		45	III.		Š09	inštalačná	P1/N8		II.
	N3.2	byt 2+kk		45	III.		Š10	inštalačná	P1/N8		II.
	N3.3	byt 4+kk		45	III.		Š11	inštalačná	P1/N8		II.
pozn.1: podrobnejšia tabul'ka s výpočtovými parametrami je v časti D.3.2. pozn.2: pre úseky P1.1, P2.1, P3.1 platí $\tau_{e}=15 \mathrm{~min}$							Š12	inštalačná	P1/N8		II.
						$\begin{array}{\|l} \hline \text { 옥 } \end{array}$	1-A.N1/N7				III.
						2-A.P3/N1		III.			

D.3.1.3.1 Ekonomické riziko v podzemných garážach

V požiarnych úsekoch P1.1, P2.1, P3.1 požiarne riešenie počíta s hromadnou garážou pre vozidlá skupiny 1 - osobné autá, dodávky a motocykle. Ekvivalentná doba trvania požiaru pre takýto požiarny úsek je $\tau_{\mathrm{e}}=15 \mathrm{~min}$. Ekonomické riziko v tomto priestore je definované súčtom indexu pravdepodobnosti vzniku a rozšírenia požiaru $\left(P_{1}\right)$ a indexu pravdepodobnosti rozsahu škôd spôsobených požiarom (P_{2}). Jeden zo vstupných parametrov pre výpočet je súčinitel' vyjadrujúci vplyv požiarno-bezpečnostných zariadení (c). V garáži je navrhnuté samočinné sprinklerové stabilné hasiace zariadenie, a teda do výpočtu bude použitý súčinitel $c_{3}=0,5$. Do garáží majú zákaz vjazdu vozidlá na pohon LPG a CNG. Tabul'kou daný najvyšší počet státí na požiarny úsek (N) ukazuje hodnotu pre garáž vstavanú, s nehorl'avým nosným systémom a určenú výlučne pre vozidlá skupiny 1. Výpočtom daný najvyšší počet státí na požiarny úsek $\left(\mathrm{N}_{\max }\right)$ zohl'adňuje vetratel'nost', členenie a požiarne vybavenie garáže.

VSTUPNÝ PARAMETER	ZNAČKA	HODNOTA
plocha požiarneho úseku	S	$298 \mathrm{~m}^{2}$
pravdepodobnost' vzniku a rozšírenia požiaru	p_{1}	1,0
pravdepodobnost' rozsahu škôd pre skupinu 1	p_{2}	0,9
súčinitel' vplyvu počtu podlaží objektu	k_{5}	3,16
súčinitel' vplyvu horl'avosti hmôt konštrukcie	k_{6}	1,0
súčínitel' vplyvu následných škôd	k_{7}	2,0
súčinitel' vplyvu požiarno-bezpečnostných zariadení	c_{3}	0,5
najvyšší počet státí v požiarnom úseku - tabul'ka	N	135
najvyšší počet státí v požiarnom úseku - návrh	N_{n}	12
zohl'adnenie možnosti odvetrania - uzavretá	x	0,25
zohl'adnenie inštalácie hasiacich zariadení - SHZ	y	2,5
zohl'adnenie členenia požiarneho úseku - nečlenený	z	1,0

$\mathrm{P}_{1}=\mathrm{p}_{1} \cdot \mathrm{c}_{3}$	$\mathrm{P}_{2}=\mathrm{p}_{2} \cdot \mathrm{~S} \cdot \mathrm{k}_{5} \cdot \mathrm{k}_{6} \cdot \mathrm{k}_{7}$
$\mathrm{P}_{1}=1,0 \cdot 0,5$	$\mathrm{P}_{2}=0,09 \cdot 298 \cdot 3,16 \cdot 1 \cdot 2$
$P_{1}=0,5$	$P_{2}=169,5$
$P_{2} \leq\left(\frac{5 \cdot 10^{4}}{P_{1}-0,1}\right)^{2 / 3}$	$0,11 \leq P_{1} \leq 0,1+\frac{5 \cdot 10^{4}}{P_{2}^{1,5}}$
$\mathrm{P}_{2} \leq 2500$	$0,11 \leq P_{1} \leq 22,65$
VYHOVUJE	VYHOVUJE

$N_{\max }=N \cdot x \cdot y \cdot z$
$N_{\max }=135 \cdot 0,25 \cdot 2,5 \cdot 1$
$N_{\max }=84,4$ »85 státí

Všetky stavebné konštrukcie v objekte splíňajú požiadavky na požiarnu odolnost' v zmysle normy. Uvedená skutočná požiarna odolnost' konštrukcií v objekte je prevzatá z technických listov konkrétnych použitých produktov. Odkazy s požiarnou odolnostou v pôdorysoch požiarno-bezpečnostného riešenia ukazujú minimálnu požadovanú hodnotu pre danú požiarne deliacu konštrukciu na základe stupňov požiarnej bezpečnosti pril'ahlých požiarnych úsekov.

STAVEBNÉ KONŠTRUKCIE	POŽIARNA ODOLNOSŤ		
	POŽ. PRE II.	POŽ. PRE III.	NÁVRH
Požiarne steny a stropy			
-v podzemných podlažiach	REI 45 DP1	REI 60 DP1	REI 60 DP1
-v nadzemných podlažiach	REI 30	REI 45	REI 180 DP1
-v poslednom nadzemnom podlaží	REI 15	REI 30	REI 180 DP1
-medzi objektmi	REI 45 DP1	REI 60 DP1	REI 60 DP1
Požiarne uzávery otvorov v požiarnych stenách a stropoch			
-v podzemných podlažiach	El 30 DP1	El 30 DP1	El 45 DP1
-v nadzemných podlažiach	El 30 DP3	El 30 DP3	El 30 DP1
-v poslednom nadzemnom podlaží	El 30 DP3	El 30 DP3	El 30 DP1
Obvodové steny			
-v podzemných podlažiach	REW 45 DP1	REW 60 DP1	REW 60 DP1
-v nadzemných podlažiach	REW 45 DP1	REW 45 DP1	REW 60 DP1
-v poslednom nadzemnom podlaží	REW 15 DP1	REW 30 DP1	REW 60 DP1
Nosné konštrukcie striech			
-v poslednom nadzemnom podlaží	R 15 DP1	R 30 DP1	R 60 DP1
Nosné konštrukcie v požiarnom úseku zaistujúce stabilitu objektu			
-v podzemných podlažiach	R 45 DP1	R 60 DP1	R 60 DP1
-v nadzemných podlažiach	R 30 DP1	R 45 DP1	R 60 DP1
-v poslednom nadzemnom podlaží	R 15 DP1	R 30 DP1	R 60 DP1
Výtahové a inštalačné šachty do 45m			
-požiarne deliace konštrukcie	EW 30 DP2	EW 30 DP1	EW 180 DP1
-požiarne uzávery otvorov v šachtách	EW 15 DP2	EW 15 DP1	EW 30 DP1

Požiarne steny v objekte sú bud' z monolitického železobetónu o sile 250 mm (REI/REW 60 DP1) alebo z plynosilikátových tvárnic o sile 250 mm (REI-M 180 DP1). Obvodové steny a steny medzi objektami sú výlučne z monolitického železobetónu. Priečky a požiarne deliace konštrukcie inštalačných šachiet sú z plynosilikátových tvárnic o sile 125 mm (EI/EW 180 DP1) alebo 75 mm (EI/EW $180 \mathrm{DP1}$). Požiarne uzávery otvorov v šachtách sú riešené protipožiarnym reviznými dvierkami (EI 30 DP1). Nosné stípy v podzemných podlažiach sú z monolitického železobetónu (R/REW 60 DP 1) a sú tu navrhnuté protipožiarne rolety z tkaniny zo sklených a antikoroznych vlákien (EI/EW 45 DP1). Vsetky požiarne stropy sú z monolitického zelezobetonu o sile 200 mm (R/REI 60 DP 1). Strop medzi 1NP a $1 P P$ je navyše opatrený tepelne izolačnými doskami z EPS granulátu a cementu (EI 60). Vchodové dvere do bytov, ktoré zároveň slúžia ako požiarny uzáver otvoru v požiarnej stene, sú navrhnuté ako ocel'ové bezpečnostné protipožiarne (El 30). Dvere na chránených unikových cestách sú navrhnuté presklené s hliníkovým rámom (EI 30).

Súčastou návrhu evakuácie je správne posúdenie obsadenosti budovy osobami. V priloženej tabul'ke sú uvedené hodnoty obsadenosti osobami podl'a projektovej dokumentácie tj " 00 (PD)" a obsadenost' osobami na základe plochy požiarneho úseku " $00\left(\mathrm{~m}^{2}\right)$ ". Hodnoty v položke " $\mathrm{m}^{2} / \mathrm{os}$ " vychádzajú z údajov v ČSN 730818 . Obsadenost osobami podl'a projektovej dokumentácie sa dodatočne navyšuje o 50% prenásobením súčinitel'om 1,5 , výsledná obsadenost' je označená ako " 00 (s)". Obsadenost' spočítaná v 7NP nie je zahrnutá v súčte nakol'ko, miestnosti tu prítomné môžu byt obsadené len obyvatel'mi domu. Počet osôb na meter štvorcový použitý pre výpočet prenajímatel'ných priestorov je vztiahnutý k funkcii predajnej plochy.
D.3.1.5.1 Obsadenie objektu osobami

¢	SPÁDOVÁ OBLASŤ CHÚC 1-A.N1/N7							
	KÓD	ÚČEL ÚSEKU	S	$\mathrm{m}^{2} / \mathrm{os}$	00(m2)	00(PD)	s	00(s)
$\underset{N}{n}$	N2.1	byt 3+kk	83,40	20	5	3	1,5	5
	N2.2	byt 2+kk	54,90	20	3	2	1,5	3
	N2.3	byt 3+kk	82,60	20	5	3	1,5	5
	N2.4	byt 3+kk	82,60	20	5	3	1,5	5
${\underset{\sim}{2}}_{n}$	N3.1	byt 4+kk	117,10	20	6	4	1,5	6
	N3.2	byt 2+kk	58,20	20	3	2	1,5	3
	N3.3	byt 4+kk	117,10	20	6	4	1,5	6
$\underset{\sim}{0}$	N4.1	byt 3+kk	83,40	20	5	3	1,5	5
	N4.2	byt 2+kk	54,90	20	3	2	1,5	3
	N4.3	byt 3+kk	82,60	20	5	3	1,5	5
	N4.4	byt 3+kk	82,60	20	5	3	1,5	5
${\underset{\sim}{n}}_{0}^{0}$	N5.1	byt 4+kk	117,10	20	6	4	1,5	6
	N5.2	byt 2+kk	58,20	20	3	2	1,5	3
	N5.3	byt 4+kk	117,10	20	6	4	1,5	6
\sum_{0}^{0}	N6.1	byt 3+kk	83,40	20	5	3	1,5	5
	N6.2	byt 2+kk	54,90	20	3	2	1,5	3
	N6.3	byt 3+kk	82,60	20	5	3	1,5	5
	N6.4	byt 3+kk	82,60	20	5	3	1,5	5
$\underset{ }{n}$	N7.1	posilňovňa	51,93	4	13	-	1,3	17
	N7.2	družstevný byt	22,78	20	2	2	1,5	3
	N7.3	sauna	77,69	-	-	8	1,5	12

믄	SPÁDOVÁ OBLASŤ CHÚC 2-A.P3/N1					
	KÓD	ÚČEL ÚSEKU	S	POČET PARK. STÁTİ	5	00(s)
m	P3.1	hromadné garáže	298,00	12	0,5	6
N	P2.1	hromadné garáže	298,00	12	0,5	6
-	P1.1	hromadné garáže	298,00	12	0,5	6

PRIESTORY S PRIAMYM ÚNIKOM DO EXTERIÉRU

KÓD	ÚČEL ÚSEKU	S	$\mathrm{m}^{2} / \mathrm{os}$	00(m2)	00(PD)	s	00(s)
N1.1	priestor na prenájom	123,25	3	42		1,0	42
N1.2	priestor na prenájom	123,25	3	42		1,0	42

V objekte sú navrhnuté dve chránené únikové cesty typu A s kombinovaným spôsobom vetrania. Obe cesty sú vybavené autonómnym systémom detekcie požiaru, ktorý sa spúšta dymovými čidlami alebo manuálnym požiarnym hlásičom umiestneným na stene pri vstupe do únikovej cesty. Pri aktivácii systému sa automaticky zatvoria všetky dvere, otvoria samočinné okná a spustí sa ventilátor na prívod čerstvého vzduchu. Ďalej sú únikové cesty vybavené núdzovým osvetlením so záložným zdrojom energie pre dobu najmenej 60 minút, a fotoluminiscenčnými tabul'kami vyznačujúcimi smer úniku a polohu požiarnych zariadení. Dvere v únikových cestách sa otvárajú v smere úniku. Dvere na konci únikových ciest sú opatrené únikovým kovaním. Výška nášlapnej vrstvy na oboch stranách dverí je v rovnakej úrovni s výnimkou vstupných dverí, kde je rozdiel 2 cm .

CHÚC 1-A.N1/N7 obsluhuje nadzemné podlažia a do jej spádovej oblasti unikajúcich osôb spadajú obyvatelia jednotlivých bytov. Vzduch do únikovej cesty privádza ventilátor umiestnený na streche vzduchovodným potrubím v šachte Š03-P1/N8 - II. cez vetracie mreže umiestnené v najnižšom bode každého podlažia. Vzduch je z únikovej cesty vytláčaný cez samočinne otvárací svetlík v streche. Súčastou tejto chránenej únikovej cesty je vstupná chodba a predsieň v 1NP, kde sa nachádzajú dva východy na vol'né priestranstvo v exteriéri.

CHÚC 2-A.P3/N1 obsluhuje podzemné podlažia. Počet unikajúcich osôb je tu stanovený na základe počtu parkovacích státí. Vzduch do únikovej cesty privádza ventilátor umiestnený v strojovni vzduchotechniky v 1PP. Vzduch je nasávaný z exteriéru cez výduch vo vnútrobloku. Tlačený vzduch uniká v 1NP cez samočinne otváracie okno pri najvyššej podeste schodiska. Táto úniková cesta je zaústená do CHUC 1-A.N1/N7 v chodbe v 1NP.

	POSÚDENIE KAPACITY ÚNIKOVÝCH CIEST	
ÚNIKOVÁ CESTA	CHÚC 1-A.N1/N7	CHÚC 2-A.P3/N1
MEDZNÝ POČET OSÔB	450	450
REÁLNY POČET OSÔB	84	18
POSUDOK	VYHOVUJE	VYHOVUJE

Na CHÚC 1-A.N1/N7 sú posúdené dve kritické miesta zúženia únikovej cesty: KM1 sú hlavné vchodové dvere s dvoma krídlami, cez ktoré unikajú všetky osoby z budovy a KM2 sú dvere oddel'ujúce NÚC halu od CHÚC schodiska v typickom podlaží. Treba podotknút', že evakuácia sa uvažuje ako súčasná pre celú budovu.

POSÚDENIE ŠÍRKY V KRITICKÝCH MIESTACH									
KÓD	POLOHA	E	s	K	$\mathrm{u}_{\text {vyp }}$	$\mathrm{u}_{\text {poz }}$	s_{4}	$\check{s}_{\text {s }}$	POSUDOK
KM1	vchodové dvere v 1NP	102	1,0	120	0,85	1,5	0,83m	1,35m	VYHOVUJE
KM2	dvere do CHÚC v 2NP	18	1,0	120	0,15	1,0	0,55m	0,80m	VYHOVUJE

NajdIhšia nechránená úniková cesta je priestor hromadných garáží v 1PP, 2PP a 3PP. V priloženej tabul'ke je posúdená doba zadymenia akumulačnej vrstvy verzus predpokladaná doba evakuácie z nechráneného priestoru. Uvedená hodnota h_{s} (svetlá výška) je z 2PP a 3PP, kde je nižší strop ako v 1PP a teda podmienky zadymenia sú horšie.

DOBA ZADYMENIA (t_{e})		PREDPOKLADANÁ DOBA EVAKUÁCIE (t_{u})						
$\mathrm{h}_{\text {s }}$	a	E	s	K_{4}	v_{u}	$\mathrm{I}_{\text {u }}$	u	POSUDOK
2,78	0,9	18	1,0	50	35	20	2	$\mathrm{t}_{\mathrm{u}}<\mathrm{t}_{\mathrm{e}}$
$\mathrm{t}_{\mathrm{e}}=2,31 \mathrm{~min}$		$\mathrm{t}_{\mathrm{u}}=0,61 \mathrm{~min}$						VYHOVUJE

Požiarne nebezpečný priestor bol spočítaný pre 1NP za pomoci výpočetnej pomôcky od Ing. Mareka Novotného, Ph.D., ktorej okrajové podmienky výpočtu vychádzajú z normy ČSN 73 0802. V 1NP sa nachádza 5 požiarne otvorených plôch (POP). Výpisy z pomôcky sú priložené v prílohovej časti (D.3.2) s tabul'kami.

VÝPOČET ODSTUPOVÝCH VZDIALENOSTİ Z HL'ADISKA SÁLANIA TEPLA														
PÚ	KÓD	POLOHA	K.SYSTÉM	P_{v}	ε	$\mathrm{I}_{\text {ocr }}$	p_{0}	$\mathrm{b}_{\text {pop }}$	$\mathrm{h}_{\text {pop }}$	T	$\mathrm{I}_{\text {max }}$	d	d^{4}	d^{\prime} s
N1.1	POP1	východ	nehorl'avý	35,3	1	18,5	78\%	6,28	3,25	866	74	4,25	4,25	2,12
	POP2	západ	nehorl'avý	35,3	1	18,5	40\%	6,28	3,25	866	38	2,45	2,45	1,22
N1.2	POP3	východ	nehorl'avý	33,7	1	18,5	63\%	6,30	3,85	859	58	3,95	3,95	1,97
	POP4	západ	nehorl'avý	33,7	1	18,5	40\%	6,30	3,85	859	37	2,65	2,65	1,32
N1.3	POP5	východ	nehorl'avý	17,1	1	18,5	100\%	1,68	2,00	758	64	1,6	1,15	0,57

D.3.1.7 Zabezpečenie stavby požiarnou vodou

Vonkajšie odberové miesto je riešené ako podzemný hydrant DN100 umiestnený do priestoru chodníka pred čelnou fasádou objektu. Hydrant má bezpečnostnú poistku proti neodbornej manipulácii. Dimenzovanie hydrantu je v súlade s ČSN 730873.

Vnútorné odberové miesta v nadzemných podlažiach sú riešené na každom podlaží hydrantom so sploštitel'nou hadicou o svetlosti DN20 s pracovným tlakom 1,5MPa. Skrinka s hydrantom je umiestnená v N2.5 (hala s prístupom do bytových jednotiek). Najvyššia zásahová vzdialenost' od hydrantu na typickom podlaží je $16,9 \mathrm{~m}$. V podzemných podlažiach je hydrant umiestnený na stene CHÚC. Nakol'ko je v hromadných garážach, disponuje tvarovo-stálou hadicou o svetlosti DN25. Všetky hydranty sú umiestnené vo výške $1,2 \mathrm{~m}$ nad podlahou. Celý systém musí byt raz za rok zrevidovaný. Voda do požiarneho vodovodu je čerpaná z nádrže na požiarnu vodu v 3PP.
D.3.1.8 Hasiace prístroje

Do objektu navrhujem osadenie niekol'kých prenosných hasiacich prístrojov (PHP) na základe normy ČSN 73 0833. Do priestorov na prenájom, odpadovej miestnosti, posilňovne a sauny podl'a výpočtu v tabul'ke nižšie, do hromadných garáží na každé podlažie 1x penový PHP s hasiacou schopnost'ou 183B, do strojovne výťahu 1x CO2 PHP 55B, k hlavnému domovému elektrorozvádzaču 1x práškový PHP 21A a v priestore haly na 7NP tiež 1x práškový PHP 21A. Všetky hasiace prístroje budú osadené vo výške $1,2 \mathrm{~m}$ nad podlahou a budú periodicky kontrolované raz za rok.

VÝPOČET POŽADOVANÉHO MNOŽSTVA HASIACICH PRÍSTROJOV																	
PÚ	ÚČEL ÚSEKU	p_{v}	S	$\mathrm{x} \leq 9000$	c_{3}	a	n_{r}	$\mathrm{n}_{\text {HJ }}$	$\mathrm{n}_{\text {PHP }}$	HJ1	PHP						
N1.1	priestor na prenájom	35,3	123,25	4350,7	0,5	0,98	1,165	6,99	2	7	$21 \mathrm{~A}+5 \mathrm{~A}$						
N1.2	priestor na prenájom	33,7	123,25	4153,5	0,5	1,07	1,218	7,31	2	8	$13 \mathrm{~A}+13 \mathrm{~A}$						
N1.3	odpadová miestnost'	17,1	6,02	102,9	0,5	1,00	0,260	1,56	1	2	8 A						
N2.5	hala	7,5	14,72						1	6	21 A						
N7.1	posilňovňa	16,0	51,93		1,0	0,97	1,06	6,36	2	7	$21 \mathrm{~A}+5 \mathrm{~A}$						
N7.3	sauna	25,7	77,69		1,0	0,81	1,19	7,14	2	8	$13 \mathrm{~A}+13 \mathrm{~A}$						

V objekte je navrhnuté do vstupu každého bytu zariadenie autonómnej detekcie a signalizácie požiaru s batériou vyhovujúce norme ČSN EN 14604. V žiadnom byte nie je nutné navrhovat' viac ako jedno takéto zariadenie nakol'ko nepresahujú plochu $150 \mathrm{~m}^{2}$ ani nie sú mezonetové. Dodatočne sú tieto zariadenia navrhnuté v prenajímatel'ných priestoroch a v miestnosti na odpadky.

Obe chránené únikové cesty v objekte sú rovnako vybavené autonómnym systémom detekcie požiaru, ktorý sa spúšta dymovými čidlami alebo manuálnym požiarnym hlásičom umiestneným na stene pri vstupe do únikovej cesty. Pri aktivácii systému sa automaticky zatvoria všetky dvere, otvoria samočinné okná a spustí sa ventilátor na prívod čerstvého vzduchu. Okrem toho bude v CHÚC nainštalované núdzové osvetlenie so záložným zdrojom energie, a to nad každou podestou a medzipodestou schodiska. Minimálna doba, po ktorú osvetlenie musí fungovat' je 60 minút podl'a požiadavky normy ČSN EN 1838. V miestach, kde sa unikové cesty začínajú, menia smer či výškovú úroveň alebo sa spájajú, budú osadené fotoluminiscenčné tabul'ky podl'a normy ČSN ISO 3864.

D.3.1.10 Hasenie požiaru a záchranné práce

Nástupné plochy budú navrhnuté na základe ČSN 730802 a dohode s dotknutým HSZ. Hasiči budú v prípade požiaru zasahovat' z ulice na východnej strane objektu, kde bude zvislým dopravným značením vyznačená nástupná plocha v spevnenej a odvodnenej vozovke s minimálnou šírkou 4 m .

Vnútorné zásahové cesty v objekte nebudú uvažované, nakol'ko požiarna výška objektu nepresahuje $22,5 \mathrm{~m}$, objekt neobsahuje chránené únikové cesty typu B či C a hromadné garáže nad $200 \mathrm{~m}^{2}$ sú vybavené samočinným sprinklerovým hasiacim zariadením. V prípade protipožiarneho zásahu budú využité vonkajšie zásahové cesty.

Vonkajšie zásahové cesty pre prístup na strechu objektu rieši výlez s teleskopickým rebríkom umiestnený v chránenej unikovej ceste končiacej v 7NP. V návrhu sa neuvažuje s použitím požiarnej lávky, ked'že strecha vyhovuje požiadavkam na zásah.

D.3.1.11 Použitá literatúra a normy

POKORNÝ, M.: Požární bezpečnost staveb: Sylabus pro praktickou výuku. Praha, České vysoké učení technické, 2021. ISBN 978-80-01-06839-7

ČSN 730818	ČSN 73 0802	ČSN 73 0873	ČSN 73 0833
ČSN 73 0821	ČSN 73 0834	ČSN 73 0810	ČSN 01 3495
ČSN EN 1990	ČSN EN 1991	ČSN EN 1992	ČSN EN 1996
ČSN EN 13501	ČSN EN 14604	ČSN EN 1838	ČSN ISO 3864

D.3.2 Prílohy

VÝPOČET ODSTUPOVÉ VZDÁLENOSTI Z HLEDISKA SÁLÁNÍ TEPLA

VERZE 03 (2017.07)
Okrajové podmínky výpočtu (dle ČSN 73 0802): 1) Průběh pozáru dle ISO 834 (normová teplotní křivka)
2) $\mathrm{I}_{0, \text { cr }}=18,5 \mathrm{~kW} / \mathrm{m}^{2}$ (na hranici PNP)
3) $\varepsilon=1,0$ (emisivita požáru)

SPECIFIKACE POP, POZNÁMKY

POP1 - N1.1-PRIESTOR NA PRENÁJOM (VÝCHOD)

Výpočtové požární zatížení: $p_{v}=$ Konstrukční systém objektu:		$\left[\mathrm{kg} / \mathrm{m}^{2}\right]$	Intervaly platnosti:
	35,3		<0; 180 >
	nehořlavý		
Emisivita: $\varepsilon=$	1,00	[-]	< 0,55; 1,00>
Kritická hodnota tepelného toku: $\mathrm{I}_{\mathrm{o,cr}}=$	18,5	$\left[\mathrm{kW} / \mathrm{m}^{2}\right]$	
Procento POP: $\mathrm{p}_{0}=$	78,0	[\%]	< 40; 100 >
Rozměry sálavé POP:			
\rightarrow šířka: $\mathrm{b}_{\text {POP }}=$	6,280	[m]	< 0,01; 30 >
\rightarrow výška: $\mathrm{h}_{\text {POP }}=$	3,250	[m]	<0,01; 15>

- VYPOČTENÉ HODNOTY

Teplota v PÚ (dle ISO 834): T =
Nejvyšší hustota tepelného toku: $I_{\max }=$

Odstupové vzdálenosti vymezující PNP: \rightarrow v prímém směru uprostřed POP: d= \rightarrow v přímém směru na okraji POP: $\mathrm{d}^{\prime}=$ \rightarrow do stran na okraji POP: $\mathrm{d}_{\mathrm{s}}=$

| 4,25 | 4,25 |
| ---: | ---: |\(\left[\begin{array}{l}{[\mathrm{m}]}

\hline 2,70

4,25\end{array}[\mathrm{~m}]\right.\)

- LEGENDA

PÚ = požární úsek | PNP = požárně nebezpečný prostor | POP = požárně otevřená plocha $\mathrm{p}_{\mathrm{o}}=$ procento požárně otevřené plochy

> Ing. Marek Pokorný, Ph.D

ČVUT v Praze | Fakulta stavební | Katedra konstrukcí pozemních staveb http://pozar.fsv.cvut.cz | marek.pokorny@cvut.cz Studijní pomůcka; pro praktickou aplikaci doporučeno ověření dle ČSN 730802

VÝPOČET ODSTUPOVÉ VZDÁLENOSTI Z HLEDISKA SÁLÁNÍ TEPLA

VERZE 03 (2017.07)
Okrajové podmínky výpočtu (dle ČSN 73 0802): 1) Průběh požáru dle ISO 834 (normová teplotní křivka)

2) $\mathrm{I}_{0, c r}=18,5 \mathrm{~kW} / \mathrm{m}^{2}$ (na hranici PNP)

3) $\varepsilon=1,0$ (emisivita požáru)

SPECIFIKACE POP, POZNÁMKY

POP2 - N1.1-PRIESTOR NA PRENÁJOM (ZÁPAD)

			Intervaly platnosti:
Výpočtové požární zatižení: $p_{v}=$ Konstrukční systém objektu:	35,3	$\left[\mathrm{kg} / \mathrm{m}^{2}\right]$	< 0; 180 >
	nehořlavý		
Emisivita: $\varepsilon=$	1,00	[-]	<0,55; 1,00>
Kritická hodnota tepelného toku: $\mathrm{I}_{\mathrm{o}, \mathrm{cr}}=$	18,5	$\left[\mathrm{kW} / \mathrm{m}^{2}\right]$	
Procento POP: $\mathrm{p}_{\mathrm{o}}=$	40,0	[\%]	< 40; 100 >
Rozměry sálavé POP:			
\rightarrow šířka: $\mathrm{b}_{\text {POP }}=$	6,280	[m]	< 0,01; 30 >
\rightarrow výška: $\mathrm{h}_{\text {POP }}=$	3,250	[m]	<0,01; 15>

VYPOČTENÉ HODNOTY

Teplota v PÚ (dle ISO 834): T = Nejvyšší hustota tepelného toku: $I_{\max }=$

| 866 |
| :---: |$\left[{ }^{\circ} \mathrm{C}\right]$

| $z, 45$ | 2,45 |
| ---: | ---: |\(\left[\begin{array}{l}{[\mathrm{m}]}

\hline 0,40

\hline 0,20

\hline 1,22\end{array}[\mathrm{~m}]\right.\) \rightarrow v přímém směru uprostřed POP: $\mathrm{d}=$ $\rightarrow v$ přímém směru na okraji POP: $\mathrm{d}^{\prime}=$ \rightarrow do stran na okraji POP: $\mathrm{d}^{\prime}{ }_{\mathrm{s}}=$

PŮDORYS A ŘEZ POŽÁRNÍM ÚSEKEM

LEGENDA

pozarnísek | PNP = požárně nebezpečný prostor | POP = požárně otevřená plocha
$p_{0}=$ procento požárně otevřené plochy
Ing. Marek Pokorný, Ph.D.
ČVUT v Praze | Fakulta stavební | Katedra konstrukcí pozemních staveb
http://pozar.fsv.cvut.cz | marek.pokorny@cvut.cz
Studijní pomůcka; pro praktickou aplikaci doporučeno ověření dle čSN 730802

VÝPOČET ODSTUPOVÉ VZDÁLENOSTI Z HLEDISKA SÁLÁNÍ TEPLA

VERZE 03 (2017.07)
Okrajové podmínky výpočtu (dle ČSN 73 0802): 1) Průběh požáru dle ISO 834 (normová teplotní křivka)

2) $\mathrm{I}_{0, \text { cr }}=18,5 \mathrm{~kW} / \mathrm{m}^{2}$ (na hranici PNP)

3) $\varepsilon=1,0$ (emisivita požáru)

SPECIFIKACE POP, POZNÁMKY

POP3 - N1.2 - PRIESTOR NA PRENÁJOM (VÝCHOD)

Výpočtové požární zatižení: $p_{v}=$		$\left[\mathrm{kg} / \mathrm{m}^{2}\right]$	Intervaly platnosti:$<0 ; 180>$
	33,7		
	nehořlavý		
Emisivita: $\varepsilon=$	1,00	[-]	< 0,55; 1,00>
Kritická hodnota tepelného toku: $\mathrm{I}_{0, \mathrm{cr}}=$	18,5	$\left[\mathrm{kW} / \mathrm{m}^{2}\right]$	
Procento POP: $\mathrm{p}_{0}=$	63,0	[\%]	< 40; 100 >
Rozměry sálavé POP:			
\rightarrow šířka: $\mathrm{b}_{\text {POP }}=$	6,300	[m]	< 0,01; 30 >
\rightarrow výška: $\mathrm{h}_{\text {POP }}=$	3,850	[m]	<0,01; 15>

- VYPOČTENÉ HODNOTY

Teplota v PÚ (dle ISO 834): T = Nejvyšší hustota tepelného toku: $I_{\max }=$

| 3,95 | 3,95 |
| ---: | ---: |\(\left[\begin{array}{l}{[\mathrm{m}]}

\hline 2,25

\hline 3,95\end{array}[\mathrm{~m}]\right.\) \rightarrow v př́mém směru uprostřed POP: $d=$ \rightarrow v přímém směru na okraji POP: $\mathrm{d}^{\prime}=$ \rightarrow do stran na okraji POP: $\mathrm{d}_{\mathrm{s}}=$

IEGENDA

PÚ = požární úsek | PNP = požárně nebezpečný prostor | POP = požárně otevřená plocha
$\mathrm{p}_{\mathrm{o}}=$ procento požárně otevřené plochy

Ing. Marek Pokorný, Ph.D.
čvUT v Praze | Fakulta stavební | Katedra konstrukcí pozemních staveb
ČVUT v Praze | Fakulta stavební | Katedra konstruk
http://pozar.fsv.cvut.cz | marek.pokorny@cvut.cz
Studijní pomůcka; pro praktickou aplikaci doporučeno ověření dle ČSN 730802
D.3-6b

VÝPOČET ODSTUPOVÉ VZDÁLENOSTI Z HLEDISKA SÁLÁNÍ TEPLA

VERZE 03 (2017.07)
Okrajové podmínky výpočtu (dle ČSN 73 0802): 1) Průběh požáru dle ISO 834 (normová teplotní křivka)

2) $\mathrm{I}_{0, c r}=18,5 \mathrm{~kW} / \mathrm{m}^{2}$ (na hranici PNP)

3) $\varepsilon=1,0$ (emisivita požáru)

SPECIFIKACE POP, POZNÁMKY

POP4 - N1.2-PRIESTOR NA PRENÁJOM (ZÁPAD)

Výpočtové požární zatižení: $p_{v}=$ Konstrukční systém objektu:			Intervaly platnosti:
	33,7	$\left[\mathrm{kg} / \mathrm{m}^{2}\right]$	<0; 180 >
	nehořlavý		
Emisivita: $\varepsilon=$	1,00	[-]	<0,55; $1,00>$
Kritická hodnota tepelného toku: $\mathrm{I}_{\mathrm{o}, \mathrm{cr}}=$	18,5	$\left[\mathrm{kW} / \mathrm{m}^{2}\right]$	
Procento POP: $\mathrm{p}_{\mathrm{o}}=$	40,0	[\%]	< 40; 100 >
Rozměry sálavé POP:			
\rightarrow šířka: $\mathrm{b}_{\text {POP }}=$	6,300	[m]	< 0,01; 30 >
\rightarrow výška: $\mathrm{h}_{\text {POP }}=$	3,850	[m]	<0,01; 15>

- VYPOČTENÉ HODNOTY

Teplota v PÚ (dle ISO 834): T = Nejvyšší hustota tepelného toku: $I_{\max }=$

859	$\left[{ }^{\circ} \mathrm{C}\right]$
37	[kW/m ${ }^{2}$]

Odstupové vzdálenosti vymezující PNP \rightarrow v př́mém směru uprostřed POP: $\mathrm{d}=$ $\rightarrow v$ přímém směru na okraji POP: $\mathrm{d}^{\prime}=$ \rightarrow do stran na okraji POP: $\mathrm{d}^{\prime}{ }_{\mathrm{s}}=$

2,65	2,65	$[\mathrm{~m}]$
0,15	2,65	$[\mathrm{~m}]$
0,08	1,32	$[\mathrm{~m}]$

LEGENDA

PÚ = požární úsek | PNP = požárně nebezpečný prostor $\mid ~ P O P=$ požárně otevřená plocha $p_{0}=$ procento požárně otevřené plochy

Ing. Marek Pokorný, Ph.D.
ČVUT v Praze | Fakulta stavební | Katedra konstrukcí pozemních staveb
http://pozar.fsv.cvut.cz | marek.pokorny@cvut.cz
Studijní pomůcka; pro praktickou aplikaci doporučeno ověření dle čSN 730802

VÝPOČET ODSTUPOVÉ VZDÁLENOSTI Z HLEDISKA SÁLÁNÍ TEPLA

VERZE 03 (2017.07)
Okrajové podmínky výpočtu (dle ČSN 73 0802): 1) Průběh požáru dle ISO 834 (normová teplotní křivka)

2) $\mathrm{I}_{0, \text { cr }}=18,5 \mathrm{~kW} / \mathrm{m}^{2}$ (na hranici PNP)

3) $\varepsilon=1,0$ (emisivita požáru)

SPECIFIKACE POP, POZNÁMKY

POP5 - N1.3 - ODPADOVÁ MIESTNOSŤ (VÝCHOD)

Výpočtové požární zatižení: $p_{v}=$		$\left[\mathrm{kg} / \mathrm{m}^{2}\right]$	Intervaly platnosti:$<0 ; 180>$
	17,1		
	nehořlavy		
Emisivita: $\varepsilon=$	1,00	[-]	< 0,55; 1,00>
Kritická hodnota tepelného toku: $\mathrm{I}_{0, \mathrm{cr}}=$	18,5	$\left[\mathrm{kW} / \mathrm{m}^{2}\right]$	
Procento POP: $\mathrm{p}_{0}=$	100,0	[\%]	< 40; 100 >
Rozměry sálavé POP:			
\rightarrow šířka: $\mathrm{b}_{\text {POP }}=$	1,680	[m]	< 0,01; 30 >
\rightarrow výška: $\mathrm{h}_{\text {POP }}=$	2,000	[m]	<0,01; 15>

- VYPOČTENÉ HODNOTY

Teplota v PÚ (dle ISO 834): T = Nejvyšší hustota tepelného toku: $I_{\max }=$

| 758 |
| ---: |$\left[{ }^{\circ} \mathrm{C}\right]$

1,60	1,60	$[\mathrm{~m}]$
1,15	1,60	$[\mathrm{~m}]$
0,57	0,80	$[\mathrm{~m}]$

\rightarrow v přímém směru uprostřed POP: $\mathrm{d}=$ \rightarrow v přímém směru na okraji POP: $\mathrm{d}^{\prime}=$ \rightarrow do stran na okraji POP: $\mathrm{d}_{\mathrm{s}}=$

IEGENDA

PÚ = požární úsek | PNP = požárně nebezpečný prostor | POP = požárně otevřená plocha
$\mathrm{p}_{\mathrm{o}}=$ procento požárně otevřené plochy

Ing. Marek Pokorný, Ph.D.
čvUT v Praze | Fakulta stavební | Katedra konstrukcí pozemních staveb
čVUT v Praze | Fakulta stavební | Katedra konstruk
http://pozar.fsv.cvut.cz | marek.pokorny@cvut.cz
Studijní pomůcka; pro praktickou aplikaci doporučeno ověření dle ČSN 730802
D.3-7b

		ÚC	ŠACHTY												7NP				6NP				5NP			4NP				3NP			2NP					1NP			1PP					2PP					3PP					
즘	N	$\begin{array}{\|l\|} \vec{\prime} \\ \frac{1}{z} \end{array}$	$\begin{array}{\|c\|} \hline n^{x} \\ \hline \end{array}$	$\stackrel{n}{3}$	べ	$\begin{array}{\|c\|} \hline 0_{0}^{\prime} \\ 0 \end{array}$	$\begin{array}{\|c\|c\|} \hline \kappa_{0}^{\prime} \\ \infty \end{array}$	$$	$\begin{array}{\|c\|} \hline \kappa_{x} \\ \hline \end{array}$	$$	$$	$$	$$	合	$$	$\begin{array}{\|l\|} \hline \underset{i}{z} \\ \omega \end{array}$	$\begin{array}{\|l\|} \hline \underset{i}{z} \\ i \end{array}$	$\underset{y}{\underset{y}{2}}$	$\begin{array}{\|l\|} \hline \mathbf{z} \\ \vdots \\ i \end{array}$	$\begin{array}{\|c\|} \hline \underset{o}{\hat{\omega}} \\ \hline \end{array}$	$\underset{\substack{z \\ \underset{\sim}{2}}}{ }$	$\begin{array}{\|l\|} \hline \underset{\sim}{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{y} \\ \dot{\omega} \end{array}$	$\begin{array}{\|c\|} \hline \underset{\sim}{z} \\ \hline \end{array}$	$\underset{y}{z}$	$\begin{array}{\|l\|} \hline \underset{\sim}{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \underset{\vdots}{\omega} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{i}{i} \\ \underset{N}{2} \end{array}$	$\underset{\underset{\sim}{\underset{~}{2}} \mid}{ }$	$\begin{array}{\|c\|} \hline \underset{\omega}{2} \\ \dot{\omega} \end{array}$	$\begin{array}{\|c\|} \hline \underset{i}{\mathbf{~}} \\ \hline \end{array}$	$\underset{\underset{u}{z}}{\underline{Z}}$	$\begin{array}{\|l} \hline \underset{\sim}{\mathrm{N}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{\sim}{2} \\ \underset{\sim}{2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{N}{i} \\ \dot{\omega} \end{array}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \\ \hline \end{array}$	$\underset{\sim}{2}$	$\underset{\hat{\omega}}{z}$	$\underset{i}{z}$	$\underset{3}{\mathbf{Z}}$	$\frac{7}{i n}$	$\stackrel{\square}{i}$	$\stackrel{\rightharpoonup}{\hat{\omega}}$	$\stackrel{\square}{i}$	$\underset{\square}{\square}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{G} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{\omega} \end{gathered}$	$\begin{array}{\|c\|} \hline \stackrel{N}{N} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{\sim}{\sim} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \underset{\sim}{\omega} \\ \text { on } \end{array}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{array}{\|c\|} \hline \underset{\omega}{\omega} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \underset{\sim}{\sim} \\ \hline \end{array}$	$\stackrel{\sim}{-}$	즘
	$\underset{\sim}{\omega}$	$\stackrel{>}{>}$														$\begin{array}{\|l\|l} \hline 0 \\ \stackrel{\rightharpoonup}{\breve{0}} \\ \vdots \end{array}$							믄 굿 굿	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\lambda} \\ N \\ N \\ \frac{1}{\lambda} \\ \hline \end{array}$			$\begin{array}{\|l\|} \hline \underset{\sim}{\underset{1}{2}} \\ \omega \\ \frac{ \pm}{\lambda} \\ \hline \frac{ \pm}{2} \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\lambda} \\ \stackrel{\rightharpoonup}{\mu} \\ \frac{1}{\lambda} \end{array}$		$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{㐅} \\ \underset{\sim}{\perp} \\ \underset{\sim}{\lambda} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\lambda} \\ N \\ N \\ \frac{1}{\lambda} \\ \hline \end{array}$			$\stackrel{\sigma}{\lambda}$ ω $\stackrel{ \pm}{\lambda}$ 춧		$\begin{array}{\|l} \hline \stackrel{\rightharpoonup}{x} \\ N \\ \stackrel{\rightharpoonup}{x} \end{array}$																$\begin{aligned} & \hline \underset{\sim}{\mathrm{o}} . \\ & \underset{\substack{2}}{ } . \end{aligned}$			\qquad	
3															$\stackrel{\omega}{0}$	合	合	N	合	合	合	$\stackrel{\text { a }}{ }$	合	合	合	合	合	合	合	合	－	合		$\stackrel{\text { a }}{ }$	合	－	合	O	合	合			ज	ज	万				ज	O			ज	ज	ठ	0^{0}
$0 \sim$															\bigcirc	\bigcirc	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$		$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	$\stackrel{\rightharpoonup}{0}$	\pm	$\stackrel{\rightharpoonup}{0}$			－	－	－				－0	－			－	－	－	${ }^{\sim}$
$0_{0}{ }^{\circ}$															N	\checkmark	\checkmark	\checkmark																\checkmark	\checkmark	\checkmark	\checkmark	N	\checkmark	\checkmark	N	N	N	N	N	N	N	N	N	N	N	N	N	N	N	n 0
n^{2}															\bigcirc	\bigcirc	－	－																			－0	－	\bigcirc	－			－	－	－0				－0	－			－	－0	\bigcirc	\sim_{0}
』															$\begin{array}{\|c} \hline-0 \\ \infty \\ \hline-8 \\ \hline \end{array}$	$\begin{aligned} & \mathbf{o} \\ & \mathbf{\infty} \end{aligned}$	$\begin{array}{\|l\|} \hline-9 \\ \infty \\ \infty \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ 90 \\ \hline \end{array}$																$\begin{array}{\|c\|} \hline-\infty \\ \infty \\ \infty \end{array}$	$\begin{array}{\|c\|} \hline-\frac{1}{\infty} \\ \infty \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & \infty \\ & \infty \end{aligned}$	$\begin{array}{\|l\|} \hline-\infty \\ \infty \\ \infty \\ \hline \end{array}$	$\stackrel{\rightharpoonup}{\mathrm{O}}$	$\stackrel{\rightharpoonup}{9}$	$\begin{array}{\|l\|} \hline-9 \\ \infty \\ \hline \end{array}$			앙	$\begin{array}{\|l\|} \hline-0 \\ \hline 0.0 \\ \hline \end{array}$	앙				$\begin{array}{\|l\|} \hline-\mathrm{o} \\ \hline \mathrm{o} \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 . \\ \hline 0 \end{array}$			$\begin{array}{\|l\|} \hline 0 \\ \hline 0 . \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \\ \hline 0 \end{array}$	$\begin{aligned} & \hline \circ \\ & \hline \mathrm{o} \end{aligned}$	\sim
－															$\stackrel{\sim}{N}$	今	g	N																今	今	今	今	坴	今	今			\checkmark	亏	$\stackrel{\rightharpoonup}{\text { N }}$				\checkmark	$\stackrel{\rightharpoonup}{\text { N }}$			\checkmark	\checkmark	$\stackrel{\rightharpoonup}{N}$	－
n															$\begin{array}{\|c\|c} \infty \\ \text { a } \\ \hline \end{array}$	$\begin{aligned} & -3 \\ & -1 \\ & 0 \end{aligned}$	$\begin{gathered} N \\ \underset{\sim}{\infty} \\ \hline \end{gathered}$	$$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \hline \mathbf{0} \end{aligned}$	$\begin{aligned} & \text { c } \\ & \stackrel{y}{\circ} \end{aligned}$	$\begin{array}{\|c} \infty \\ \underset{\sim}{\infty} \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$	$\begin{aligned} & \overrightarrow{3} \\ & \overrightarrow{0} \end{aligned}$	$\begin{array}{\|c} \mathbf{n} \\ \mathbf{\infty} \\ \mathbf{O} \\ \hline \end{array}$	$\begin{aligned} & \overrightarrow{3} \\ & \overrightarrow{0} \end{aligned}$	$$	$\begin{gathered} \infty \\ \stackrel{\infty}{\circ} \\ \hline \end{gathered}$	$$	$$	$\left\lvert\, \begin{aligned} & \vec{~} \\ & \overrightarrow{0} \end{aligned}\right.$	$\begin{aligned} & \text { uI } \\ & \infty \\ & \mathbf{1} \\ & \hline \end{aligned}$	$\begin{aligned} & \vec{~} \\ & \vec{a} \end{aligned}$		$\begin{gathered} \infty \\ \stackrel{\infty}{\circ} \\ \hline \mathbf{\alpha} \\ \hline \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{1} \\ & \hline 0 \\ & \hline \end{aligned}$	$\begin{gathered} \text { n } \\ \stackrel{\mathrm{j}}{0} \end{gathered}$	$\begin{array}{\|c} \infty \\ \underset{\sim}{\infty} \\ \stackrel{\rightharpoonup}{2} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{a} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{array}{\|c} \vec{\sim} \\ \underset{\sim}{\mathrm{N}} \\ \hline \end{array}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{心} \\ \underset{\sim}{\mathrm{u}} \\ \hline \end{array}$	$\begin{gathered} \stackrel{\rightharpoonup}{N} \\ \cdots \\ \hline \end{gathered}$	$\begin{gathered} \vec{\omega} \\ \boldsymbol{\omega} \\ \mathbf{o} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	응	$$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \vec{\omega} \\ & \overline{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{array}{\|c} 2 \\ \hdashline-0 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0 \\ \infty \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \stackrel{\circ}{\mathrm{o}} \end{gathered}$	$\begin{aligned} & \vec{\omega} \\ & \text { jo } \end{aligned}$	$\begin{array}{\|c} 10 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c} 2 \\ \vdots \\ 0 \end{array}$	N 0 0 O	n
00															$\overrightarrow{\mathrm{a}}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{\infty} \\ \underset{\infty}{\infty} \end{array}$	$\begin{aligned} & \text { N } \\ & \end{aligned}$	$\begin{gathered} \vec{\omega} \\ \stackrel{\rightharpoonup}{N} \\ \hline \end{gathered}$																			$\begin{array}{\|c} 0 \\ 0 \\ \infty \\ \infty \\ \hline \end{array}$	$\begin{array}{\|c} \omega \\ \omega \\ \omega \\ \hline \end{array}$	$\begin{array}{\|c} \hline N \\ N \\ N \end{array}$	$\begin{array}{\|c} N \\ \underset{\sim}{N} \\ \hline \end{array}$	$\begin{array}{\|l} \mathrm{N} \\ \hline \end{array}$	$\begin{array}{\|c} \text { A } \\ \text { No } \\ \hline \end{array}$	$\vec{\infty}$	$\overrightarrow{\mathbf{\infty}}$	$\begin{array}{\|l} \hline \stackrel{0}{\hat{N}} \\ \stackrel{\sim}{\omega} \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \text { Non } \end{aligned}$	$\begin{aligned} & \text { A } \\ & \hline 0 \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	$\begin{aligned} & \stackrel{\rightharpoonup}{3} \\ & i \\ & \hline \end{aligned}$	$\begin{array}{\|c} \text { A } \\ \text { No } \\ \hline \end{array}$	$\begin{aligned} & \text { A } \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{\rightharpoonup}{\infty}$	$\stackrel{y}{\mathrm{G}}$	0
n_{0}^{0}															$\begin{aligned} & \stackrel{0}{\vec{a}} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \stackrel{N}{N} \end{array}$	$\begin{array}{\|l} \hline 0 \\ \hat{\rightharpoonup} \\ \text { a } \end{array}$	$\begin{aligned} & 0 \\ & \tilde{\sim} \\ & \underline{U} \end{aligned}$																			$\stackrel{\stackrel{O}{\stackrel{\rightharpoonup}{\omega}}}{\stackrel{\rightharpoonup}{2}}$	$\begin{gathered} 0 \\ \mathrm{i} \\ \mathrm{y} \\ \mathrm{o} \end{gathered}$	$\stackrel{\text { O}}{\stackrel{\rightharpoonup}{\alpha}}$	$\begin{aligned} & \text { o } \\ & \stackrel{\rightharpoonup}{\infty} \\ & 0 \end{aligned}$	$\begin{array}{\|c} \hline \stackrel{\circ}{\omega} \\ \underset{\sim}{\prime} \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\omega}}{\underset{\Xi}{\mid}}$	$\begin{aligned} & \text { 응 } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\overrightarrow{3}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\omega} \\ & \stackrel{\omega}{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\text { O}}{-}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\vec{~}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{array}{\|l} \hline \stackrel{\text { Nu}}{ } \\ \text { n } \end{array}$	$\begin{array}{\|l} \hline \stackrel{\circ}{\omega} \\ \underset{\sim}{n} \end{array}$	$\stackrel{\text { O}}{\underline{\omega}}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{3} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{array}{\|c\|} \hline 0 \\ \hline \stackrel{0}{9} \\ \hline 0 \end{array}$	$\begin{gathered} \hline \stackrel{\rightharpoonup}{\omega} \\ \stackrel{\omega}{0} \end{gathered}$	i_{n}^{n}
\％															N	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{-}$																			$\stackrel{\rightharpoonup}{\infty}$	N	N	N	N	N	$\stackrel{\sim}{\sim}$	$\stackrel{N}{-}$	$\stackrel{\omega}{\omega}$	N	N	$\stackrel{N}{\sim}$	$\stackrel{N}{\sim}$	N	N	N	$\stackrel{\sim}{-}$	\cdots	N	－
ns															$\begin{array}{\|c} \mathrm{N} \\ \mathrm{O} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|l\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|l\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c} N \\ \text { N } \end{array}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{~N} \\ \mathrm{~N} \end{array}$	$\begin{array}{\|l\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c} N \\ \mathcal{N} \end{array}$	$\begin{aligned} & N \\ & \hat{N} \\ & \mathrm{~N} \end{aligned}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{o} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \underset{\sim}{u} \end{array}$	$\begin{array}{\|c} \hline N \\ \mathrm{~N} \\ \mathrm{G} \end{array}$	$\begin{array}{\|l\|} \hline N \\ \hat{N} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{o} \\ \mathrm{G} \end{array}$	$\begin{array}{\|c} N \\ \mathrm{~N} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \underset{\sim}{n} \end{array}$	$\begin{array}{\|l\|} \hline N \\ \mathrm{~N} \\ \mathrm{G} \end{array}$	$\begin{array}{\|c\|} \hline N \\ \mathrm{~N} \\ \hline \end{array}$	$\begin{aligned} & N \\ & \underset{\sim}{N} \end{aligned}$	$\begin{array}{\|l\|} \hline N \\ \mathrm{~N} \\ \mathrm{O} \end{array}$	$\begin{array}{\|c\|} \hline \omega \\ \dot{\circ} \mathrm{o} \\ \hline \end{array}$	总	$\begin{array}{\|c\|} \hline \omega \\ \infty \\ \infty \end{array}$	옹	$\begin{array}{\|c\|} \hline \omega \\ \omega \\ \hline \end{array}$	옹	$\begin{array}{\|l\|} \hline \omega \\ \underset{\sim}{\omega} \end{array}$	合	$\underset{\sim}{N}$	$\underset{\sim}{N}$	$\begin{gathered} \mathrm{N} \\ \infty \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline N \\ \infty \\ \infty \end{array}$	$\begin{array}{\|l\|} \hline N \\ \infty \\ \hline \end{array}$	$\begin{array}{\|l\|} \stackrel{N}{\infty} \\ \hline \end{array}$	$\underset{\sim}{N}$	$\begin{array}{\|c} N \\ \infty \\ \infty \end{array}$	$\begin{array}{\|c\|} \hline N \\ \infty \\ \infty \end{array}$	$\stackrel{\sim}{\sim}$	${ }_{n}$
${\underset{n}{n}}^{\sim}$															$\begin{array}{\|c} \mathrm{O} \\ \mathrm{y} \\ \mathrm{vi} \\ \hline \end{array}$	$\begin{aligned} & \mathrm{o} \\ & \text { a } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \text { a } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \text { a } \\ & \mathrm{N} \\ & \hline \end{aligned}$																			$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \text { 号 } \\ & \hline \mathbf{~} \end{aligned}$	$\begin{aligned} & \hline \mathrm{O} \\ & \mathrm{~N} \\ & \mathrm{~A} \end{aligned}$	$\begin{gathered} 0 \\ \text { Oy } \\ 0 \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \% \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \text { o } \\ & \text { a } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{n} \\ & \mathrm{y} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \mathbf{o} \\ \stackrel{\alpha}{\omega} \\ \mathbf{\omega} \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{3}{0} \end{aligned}$	응	$\begin{aligned} & \mathrm{O} \\ & \mathrm{y} \\ & \mathrm{G} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \mathrm{y} \\ \mathrm{G} \\ \hline \end{array}$	$\begin{array}{\|l} 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \text { 을 } \\ & \stackrel{y}{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{y}{3} \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{y}{\mathrm{G}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{y} \\ & \mathrm{v} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & \hline 0 \\ & 0 \end{aligned}$	$\stackrel{5}{5}$
こ															$\stackrel{\stackrel{\rightharpoonup}{\vec{\omega}}}{\underline{U}}$	$\begin{array}{\|l} \hline \stackrel{O}{N} \\ \underset{\sim}{\prime} \end{array}$	$\begin{array}{\|c\|c} \hline 0 \\ \omega \\ \omega \\ \hline \end{array}$	$\begin{array}{\|c} \hline \stackrel{O}{N} \\ \underset{\sim}{n} \end{array}$																			$\stackrel{\circ}{3}$	$\begin{array}{\|l} \hline \text { O } \\ \text { N } \\ \hline \end{array}$	$\stackrel{O}{\mathrm{~N}}$	$\begin{aligned} & \stackrel{0}{\vec{\omega}} \\ & \underset{\infty}{ } \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{\rightharpoonup}{\omega} \\ \underset{\sim}{0} \end{array}$	$\begin{array}{\|c} \hline \stackrel{\circ}{\sim} \\ \underset{\sim}{*} \end{array}$	$\stackrel{O}{\stackrel{\rightharpoonup}{\Delta}}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{v}} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{\sim}{\alpha} \\ \infty \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\begin{aligned} & \text { 믄 } \\ & \text { जु } \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{\omega}}}{\stackrel{\rightharpoonup}{4}}$	$\stackrel{\circ}{\overrightarrow{3}}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\mathrm{N}} \\ \mathbf{U} \end{array}$	$\begin{array}{\|c} \hline \stackrel{N}{N} \\ \text { N } \end{array}$	$\begin{aligned} & \text { 무 } \\ & \text { जु } \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\vec{\omega}}}{\vec{\omega}}$	$\stackrel{\stackrel{0}{\vec{j}}}{\stackrel{\rightharpoonup}{\omega}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \underset{y}{\prime} \end{aligned}$	こ
天															$\stackrel{\stackrel{O}{\vec{\omega}}}{\stackrel{\rightharpoonup}{\omega}}$	$\begin{array}{\|c} \hline \stackrel{0}{\mathrm{~N}} \\ \mathrm{u} \\ \hline \end{array}$	$\begin{array}{\|l} \hline 0 \\ N \\ \text { N } \end{array}$	$\begin{array}{\|l} \hline \stackrel{0}{N} \\ \underset{\sim}{2} \end{array}$																			$\begin{array}{\|c\|} \hline \stackrel{\rightharpoonup}{\mathrm{H}} \\ \mathrm{~m} \\ \hline \end{array}$	$\begin{aligned} & \text { 응 } \\ & \text { n } \end{aligned}$	$\stackrel{\circ}{3}$	$\begin{array}{\|l} \hline 0 \\ \mathrm{~N} \\ \mathrm{O} \end{array}$	$\begin{array}{\|l} \hline \mathrm{O} \\ \mathrm{~N} \\ \hline \end{array}$	$\begin{array}{\|c} \hline \mathrm{O} \\ \mathrm{~N} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \mathrm{O} \\ \stackrel{\rightharpoonup}{\mathrm{~A}} \end{array}$		$\begin{array}{\|l} \hline \text { O } \\ \text { N } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{O} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 음 } \\ & \text { 促 } \end{aligned}$	$\begin{aligned} & \mathrm{o} \\ & \stackrel{\mathrm{c}}{\mathrm{~g}} \end{aligned}$	$\begin{array}{\|l\|} \hline \mathrm{o} \\ \hline \mathrm{y} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \text { 우 } \\ \text { N } \\ \hline \end{array}$	$\begin{array}{\|l} \hline \text { N } \\ \text { O } \end{array}$	$\begin{aligned} & \text { No } \\ & \text { Oु } \end{aligned}$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{\mathrm{g}} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \mathrm{O} \\ \hline \mathrm{~g} \\ \hline \end{array}$	$\begin{aligned} & \text { 응 } \\ & \text { 合 } \end{aligned}$	天
σ															$\begin{array}{\|l\|} \hline \text { 읒 } \\ \text { 아 } \end{array}$	$\begin{aligned} & 0 \\ & \stackrel{0}{y} \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \text { in } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \infty \end{aligned}$																			$\begin{array}{\|l\|} \hline 0 \\ \dot{\infty} \\ \infty \\ \infty \end{array}$	$\begin{aligned} & 0 \\ & \text { 菏 } \end{aligned}$	응				$\begin{aligned} & 0 \\ & \stackrel{0}{91} \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \text { 号 } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \text { in } \\ \hline \end{array}$					$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$			$\begin{array}{\|l\|} \hline 0 \\ \underset{\sim}{c} \\ \text { a } \end{array}$	$\left\lvert\, \begin{gathered} \underset{0}{0} \\ \underset{-}{2} \end{gathered}\right.$	－	σ
n															\rightarrow	\rightarrow	\rightarrow	\rightarrow																			－	－	－	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	－	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\rightarrow	－	－	\rightarrow	\rightarrow	n
\bigcirc															$\stackrel{\rightharpoonup}{f}$	$\begin{gathered} \mathrm{N} \\ \mathrm{~N} \end{gathered}$	$\begin{array}{\|c} A \\ -9 \\ 0 \end{array}$	$\overrightarrow{\vec{a}}$	$\begin{gathered} \mathrm{A} \\ 0 \end{gathered}$	$\begin{array}{\|c} \hat{A} \\ 0 \\ \hline \end{array}$	$\underset{0}{\mathrm{~A}}$	$\begin{array}{\|c} \hline \hat{N} \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c} A \\ 0 \\ 0 \end{array}$	$\begin{gathered} A \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} A \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} A \\ 0 \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \\ 0 \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{A} \\ \mathrm{O} \\ \hline \end{array}$	$\begin{gathered} \mathrm{A} \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{A} \\ 0 \\ 0 \end{gathered}$	$\begin{array}{\|c} \hat{A} \\ 0 \end{array}$	$\begin{gathered} \hat{N} \\ 0 \\ \hline \end{gathered}$	$\stackrel{7}{6}$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{~B} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \hat{N} \\ 0 \\ \hline \end{array}$	$\begin{gathered} \hat{H} \\ 0 \end{gathered}$	$\begin{array}{\|c\|} \hline \\ \infty \\ \infty \\ \hline \end{array}$	د	$\underset{\sim}{\omega}$	$\begin{array}{\|c\|} \omega \\ \omega \\ \omega \end{array}$	$\begin{gathered} \text { 탕 } \\ 0 \end{gathered}$	$\begin{array}{\|} \text { A } \\ 0 \\ \hline \end{array}$	$\stackrel{1}{6}$	$\stackrel{1}{\infty}$	－	$\begin{aligned} & \hat{N} \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{O} \end{aligned}$	$\begin{gathered} \vec{v} \\ 0 \\ \hline \end{gathered}$	$\stackrel{\infty}{-}$	İ	$\begin{aligned} & \hat{A} \\ & \mathbf{O} \\ & \hline \end{aligned}$	$\begin{gathered} \hat{A} \\ 0 \end{gathered}$	$\stackrel{\infty}{\omega}$	$\stackrel{\infty}{-}$	$\stackrel{1}{4}$	\％
$\begin{aligned} & \text { n } \\ & \text { m } \end{aligned}$	三	\equiv	＝	＝	＝	＝	＝	＝	$=$	$=$	$=$	$=$	$=$	$=$	$=$	\equiv	\equiv	三	三	三	三	三	三	三	三	三	三	三	\equiv	三	三	\equiv	$=$	三	三	三	三	三	三	三	三	三	＝	＝	＝	\equiv	三	＝	＝	＝	三	三	＝	＝	＝	¢
$\begin{aligned} & \text { D } \\ & \text { N } \end{aligned}$			$\begin{array}{\|c\|} \hline \tilde{N}^{\prime} \\ z_{\omega}^{\omega} \\ \dot{e} \\ \underset{\sim}{2} \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline \tilde{N}^{\prime} \\ z_{\omega}^{\omega} \\ \dot{\infty} \\ \underset{\sim}{2} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \tilde{N}^{\prime} \\ z_{\omega}^{\omega} \\ \dot{\infty} \\ \underset{\sim}{2} \\ \hline \end{array}$						n n_{n}^{2} ω 0 0 0	n n_{n}^{n} ω 0 0 0					$$	$$								$\begin{array}{\|c\|} \hline \tilde{N}^{\prime} \\ z_{\omega}^{\omega} \\ o \\ 0 \\ \hline \end{array}$					$\begin{array}{\|l\|} \hline \underset{\sim}{0} \\ \sum_{\omega} \\ 0 \\ 0 \\ \hline \end{array}$									$$									$\begin{array}{\|l\|} \hline \underset{\sim}{n} \\ \sum_{u}^{\omega} \\ \dot{\sim} \\ \underset{N}{0} \\ \hline \end{array}$				－	＋

RANICA PoŽIARNEHO ÚSEKU
RASA A SMER ÚNiKU prenosný hasiaci prístroj núdzové osvetlenie Rívod vzduchu do chúc SKRINKA S POŻ. HYDRANTOM
区RELL5DP1 POŽIARNY STROP V ÚSEKU
dYMoví detektor poz̃iaru AUTONÓMNY SYSTÉM DETEKCIE POŽIARU manuálny hlásič požiaru ELEKTRICKÁ Požlarna signalizácia SAmočinNé hasiace Zariadenie POŻIARNE NEBEZPEČNÝ PRIESTOR požiarne otvorená plocha NÁSTUPNÁ PLOCHA PRE ZÁSAH HZS KRITICKÉ MIESTO PRI ÚNIKU SAmoc̃inné okno POŽIARNY VÝLEZ NA STRECHU PODZEMNÝ HYDRANT

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024 LETNÝ SEMESTER

ATELIÉR

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Marta Bláhová
AUTOR
Max Neradný

DRUŽSTVO
NOVŠIE DVORY

POŽIARNE ČASŤ BEZPEČNOSTNÉ

RIEŠENIE
PÔDORYS
3PP

D.3.3.2	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

_. - hranica poz̃íarneho úseku

- TRASA A SMER ÚNIKU MANUÁLNY HLÁSIČ DOŻİRL ELEKTRICKÁ Poz̃IARNA SIGNALIZÁCIA SAMočInNÉ HASIACE ZARIADENIE Pož|ARNE NEBEZPEČNÝ PRIESTOR požiarne otvorená plocha NÁSTUPNÁ PLOCHA PRE ZÁSAH HZS RITICKÉ MIESTO PRI ÚNIKU SAmoc̃inné okno PoŽIIARNY VÝLEZ NA STRECHU PODZEMNÝ HYDRANT

BAKALÁRSKA PRÁCA
AR 2023/2024 LETNÝ SEMESTER

ATELIÉR

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Marta Bláhová
AUTOR
Max Neradný

DRUŽSTVO
NOVŠIE DVORY

POŽIARNE ČAST beZPečnostné RIEŠENIE

PÔDORYS
2NP

D.3.3.4	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

ranica požiarneho úseku
RASA A SMER ÚNIKU AUTONÓMNY SYSTÉM DETEKCIE POŽ̌IARU añuálny hlásič poz̃iaru EKKTRICKÁ POŽIARNA SIGNALIZÁCIA AmočinnÉ hasiace Zariadenie OŻIARNE NEBEZPEČNÝ PRIESTOR PožIARNE OTVORENÁ PLOCHA NÁSTUPNÁ PLOCHA PRE ZÁSAH HZS KRITICKÉ MIESTO PRI ÚNIKU SAMOČINNÉ OKNo
POZ̃IARNY VÝLEZ NA STRECHU PODZEMNY HYDRANT

FAKULTA

BAKALÁRSKA PRÁCA AR 2023/2024 LETNÝ SEMESTER

ATELIER

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách

VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.

KONZULTANT
Ing. Marta Bláhová
AUTOR
Max Neradný

DRUŽSTVO
NOVŠIE DVORY

POŻIARNE CAST BEZPEČNOSTNÉ RIEŠENIE

PÔDORYS
7 NP

D.3.3.5	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

D.4.1 Technická správa
D.4.1.1 Charakteristika stavby
D.4.1.2 Vodovod

D.4.1.2.1	Bilancia spotreby vody
D.4.1.2.2	Ohrev teplej vody
D.4.1.2.3	Rozvody vinteriéri
D.4.1.2.4	Požiarny vodovod

D.4.1.3 Kanalizácia splašková
D.4.1.4 Kanalizácia dažd'ová
D.4.1.5 Vykurovanie
D.4.1.5.1 Tepelné zisky a straty
$\begin{array}{ll}\text { D.4.1.6 } & \text { Chladenie } \\ \text { D.4.1.7 } & \text { Vetranie }\end{array}$
D.4.1.7.1 Prirodzené vetranie
D.4.1.7.2 Nútené vetranie
$\begin{array}{ll}\text { D.4.1.8 } & \text { Elektrické rozvody } \\ \text { D.4.1.9 } & \text { Odpadové hospodárstvo }\end{array}$
D.4.2 Výkresová čast

D.4.2.1	Koordinačná situácia	$1: 200$
D.4.2.2	Pôdorys 3PP	$1: 100$
D.4.2.3	Pôdorys 2PP	$1: 100$
D.4.2.4	Pôdorys 1PP	$1: 100$
D.4.2.5	Pôdorys 1NP	$1: 100$
D.4.2.6	Pôdorys 2NP	$1: 100$
D.4.2.7	Pôdorys 3NP	$1: 100$
D.4.2.8	Pôdorys 7NP	$1: 100$
D.4.2.9	Pôdorys strechy	$1: 100$

D.4.1 Technická správa

D.4.1.1
 Charakteristika stavby

Riešený bytový dom sa nachádza v Prahe, presnejšie v mestskej časti Praha 4 - Lhotka Novovzniknutá parcela, ktorú si družstvo zakúpilo je umiestnená v prevažne obytnom bloku, ktorý bude mat' poloverejný priechodný vnútroblok. Nadmorská výška parcely sa pohybuje medzi 303 až 304 m.n.m (b.p.v) a klesá smerom na sever. Fasády sú orientované na východ (námestie) a na západ (vnútroblok), zo severu aj z juhu bude stavba susedit' s d'alśsimi bytovými domami. Hlavný vstup do objektu je z námestia, vedl'ajsí z vnútrobloku poprípade z hromadných garáží. Stavba má 7 nadzemných a 3 podzemné podlažia. Objekt má obdížikový pôdorys $18 \times 21,2 \mathrm{~m}$. Siedme nadzemné podlažie je ustúpené a nachádza sa tu prevádzková strecha. Strecha objektu je plochá so substrátom a extenzívnou zeleňou.

D.4.1.2

Vodovod

Vodovodná prípojka (SOO3a) je napojená na verejný vodovodný rad vedený ulicou na východnej strane objektu v híbke $1,5 \mathrm{~m}$ pod povrchom. Svetlost' prípojky je navrhnutá DN80 na základe výpočtu a bilancie potreby vody a prítomnosti samočinných hasiacich zariadení. Prípojka je dlhá $16,5 \mathrm{~m}$ a na rad je napojená odbočovacou tvarovkou. Prípojka je z polyetylénového potrubia. Prípojka vchádza do objektu v híbke $1,0 \mathrm{~m}$ pod povrchom cez prestupovú tesniacu pažnicu. V miestnosti P1.02 sa nachádza centrálna vodomerná zostava cca 2 m od prestupu.

D.4.1.2.1 Bilancia spotreby vody

Podl'a vyhlášky č. 428/2001 Sb. je špecifická spotreba vody pre bytové stavby s centrálnou prípravou teplej vody 100 litrov na osobu za deň. V objekte je podl'a projektovej dokumentácie 84 osôb, čiže denná spotreba vychádza na 8400 litrov za deň. Po prepočte na hodinovú spotrebu pomocou súčinitel'ov nerovnomernosti, kde k_{d} pre rok 2023 vychádza 1,3 a k_{h} pre sústredenú zástavbu je 2,1, dostaneme minimálnu svetlost' potrubia vodovodnej prípojky DN15. Tento požiadavok je však prebitý minimálnou dimenziou prípojky pre budovy so samočinnými hasiacimi zariadeniami (v hromadných garážach je navrhnutý systém sprinklerov), kde norma diktuje DN80.

VSTUPNÝ PARAMETER	ZNAČKA	HODNOTA	JEDNOTKA
špecifická potreba vody	q	100	$\mathrm{l} / \mathrm{os}, \mathrm{deň}$
obsadenost' osobami	n	84	os
PRIEMERNÁ DENNÁ SPOTREBA VODY	\mathbf{Q}_{p}	8400	$\mathrm{l} / \mathrm{deň}$
súčinitel' dennej nerovnomernosti	k_{d}	1,3	-
MAXIMÁLNA DENNÁ SPOTREBA VODY	\mathbf{Q}_{m}	10920	$\mathrm{l} / \mathrm{deň}$
súčinitel' hodinovej nerovnomernosti	k_{h}	2,1	-
doba čerpania vody	z	24	h
MAXIMÁLNA HODINOVÁ SPOTREBA VODY	\mathbf{Q}_{h}	955,5	l / h
rýchlost' vody v potrubí	v	1,5	$\mathrm{~m} / \mathrm{s}$
maximálna hodinová potreba vody	Q_{h}	0,0002654	$\mathrm{~m} / \mathrm{s}$
MINIMÁLNY VNÚTORNÝ PRIEMER PRÍPOJKY	$\mathrm{d}_{\text {min }}$	0,015	m

$Q_{p}=q \cdot n$
$Q_{m}=Q_{p} \cdot k_{d}$
$Q_{h}=\frac{Q_{m} \cdot k_{h}}{z}$
$d_{\text {min }}=\sqrt[2]{\frac{4 Q_{h}}{Q_{\pi} \cdot v}}$

Návrh a výpočet ohrievania teplej vody je spravený na základe metódy, ktorá je uvedená v ČSN EN 15316-3-1, 2, 3. Špecifická spotreba teplej vody na obyvatel'a bytového domu je podl'a tejto normy 40 litrov za deň. Na základe výpočtu nižšie sú do objektu navrhnuté dva stojaté zásobníky s bivalentným zdrojom pre ohrev teplej vody s objemom 1400 litrov (s príkonom 18 kW) a 2000 litrov (s príkonom $22,5 \mathrm{~kW}$), umiestnené v miestnosti P2.02. Pre prenajímatel'né priestory navrhujem inštaláciu prietokových ohrievačov vody, a teda nebudú vyžadovat' vlastné zásobníky na teplú vodu.

D.4.1.2.3 Rozvody v interiéri

Vodovodná prípojka vchádza do budovy prestupom v stene 1PP, kde odbáča do technickej miestnosti (kód P1.02), v ktorej je umiestnený hlavný uzáver vody a hlavná vodomerná zostava. V tejto miestnosti dochádza k deleniu vodovodného potrubia na rozvody studenej vody pre byty, teplej vody cez zásobníky a požiarneho vodovodu. Potrubia s teplou a cirkulačnou vodou sú v 1PP opatrené rukávom z tepelnej izolácie. Všetky potrubia v 1PP sú vedené vol'ne pod stropom a do nadzemných podlaží pokračujú cez inštalačné šachty. V kúpel'niach a kuchyniach každého bytu sú umiestnené vedl'ajšie vodomery pre daný byt. Potrubia s vodou v bytoch a nebytových priestoroch sú vedené výhradne drážkami v predstenách.

D.4.1.2.4 Požiarny vodovod

Požiarnym vodovodom je napojený požiarny hydrant v každom nadzemnom podlaží so sploštitel'nou hadicou o svetlosti DN20 s pracovným tlakom 1,5MPa. Skrinka s hydrantom je umiestnená v N2.5 (hala s prístupom do bytových jednotiek). V podzemných podlažiach je hydrant umiestnený na stene CHÚC. Nakol'ko je v hromadných garážach, disponuje tvarovostálou hadicou o svetlosti DN25. Okrem toho je v hromadných garážiach nainštalované samočinné hasiace zariadenie (sprinklery). Požiarny vodovod je napájaný na záložný zdroj požiarnej vody, ktorým je nádrž v miestnosti P2.02 v 3PP.

Kanalizačná prípojka (SOO3b) je napojená na verejnú kanalizačnú stoku vedenú ulicou na východnej strane objektu v híbke 1,5m pod povrchom. Prípojka je v sklone 2% smerom k stoke a má navrhnutý prierez DN150. Nižšie priložená tabul'ka kompiluje počty všetkých zariad'ovacích predmetov napojených na systém splaškovej kanalizácie.

ZARIAĎOVACÍ PREDMET	1NP	2NP	3NP	4NP	5NP	6NP	7NP	Σ
záchodová misa so splach. nádržkou 61	3	7	8	7	8	7	1	41 x
klasické umývadlo	3	7	7	7	7	7	0	38 x
malé umývadlo	0	3	3	3	3	3	1	16 x
sprcha s vaničkou na zátku	0	0	3	0	3	0	1	7 x
kúpacia vaňa	0	4	2	4	2	4	0	16 x
kuchynský drez	1	4	3	4	3	4	1	20 x
automatická umývačka riadu	1	4	3	4	3	4	0	19 x
automatická práčka s kapacitou do 12kg	0	4	3	4	3	4	0	18 x
keramická výlevka s napojením DN100	2	0	0	0	0	0	1	3 x
podlahová vpust' DN50	0	0	0	0	0	0	1	1 x
podlahová vpust' DN70	0	0	0	0	0	0	1	1 x

V nadzemných podlažiach budovy sú potrubia vedené cez prísteny, prípadne podhl’adom v 1NP a to so sklonom minimálne 3%. V objekte sa nachádza celkom 9 (11) zvislých potrubi, ktoré sa pod stropom 1PP zbiehajú do jedného potrubia s DN150. V miestach, kde potrubia menia smer budú nainštalované čistiace tvarovky.

VSTUPNÝ PARAMETER	ZNAČKA	HODNOTA	JEDNOTKA
celkový navrhovaný prietok odpadových vôd	$Q_{\text {tot }}$	6,930	l / s
vnútorný priemer potrubia	d	0,146	m
maximálne dovolené plnenie potrubia	h	70	$\%$
sklon splaškového potrubia	l	2	$\%$
súčinitel' drsnosti potrubia	$\mathrm{k}_{\text {ser }}$	0,4	mm
prietokový prierez potrubia	S	0,012517	$\mathrm{~m}^{2}$
rýchlost' prúdenia	v	1,349	$\mathrm{~m} / \mathrm{s}$
maximálny dovolený prietok	$\mathrm{Q}_{\max }$	16,883	l / s

D.4.1.4
 Dažd’ová kanalizácia

Prípojka dažd’ovej kanalizácie (SOO3e) je napojená na akumulačnú nádrž (ktorá je súčastou stavebného objektu prípojky) s objemom 2000 litrov na západnej strane bytového domu, určenú pre závlahu intenzívnej zelene na pozemku investora. Samonosná akumulačná nadrž s pôdorysnymi rozmermi $1,2 \times 2,2 \mathrm{~m}$ a vyškou 1 meter je zalozená na betonovom základe hrúbky 150 mm , a to v híbke 1,45 metra pod úrovňou upraveného terénu, tak aby zásyp nad nádržou nepresiahol 30 cm podl'a požiadavku výrobcu. Nádrž je vyrobená z polypropylénu. Nádrž má bezpečnostný prepad s DN100, ktorým sa napája na systém retenčných nádrží mimo pozemku investora v priestore vnútrobloku. Pre koordinátora vnútrobloku odporúčam počítat's objemom 2700 litrov do vsakovacieho objektu pre budovu E podl'a koordinácie bloku.

VSTUPNÝ PARAMETER	ZNAČKA	HODNOTA	JEDNOTKA
využitel'ná plocha strechy	P	334,6	$\mathrm{~m}^{2}$
ročný úhrn zrážok pre Prahu	j	618,0	$\mathrm{~mm} / \mathrm{rok}$
koeficient odtoku strechy - plochá, zelená	f_{s}	0,2	-
koeficient účinnosti filtru mech. nečistôt	f_{f}	0,9	-
množstvo zachytenej dažd’ovej vody	\mathbf{Q}	37,22	$\mathrm{~m}^{3} / \mathrm{rok}$
koeficient optimálnej vel'kosti nádrže	z	20	-
navrhovaný objem akumulačnej nádrže	\mathbf{V}_{p}	2,0	$\mathrm{~m}^{3}$
koeficient priepustnosti zeminy - ílovito-hlinitá	k_{f}	5.10^{-5}	-
odporúčaný objem vsakovacej nádrže	$\mathbf{V}_{\text {vsak }}$	2,7	$\mathrm{~m}^{3}$

Využitel'ná plocha strechy použitá vo výpočte vyššie je súčet plôch strešných terás v 7NP a extenzívnej zelenej strechy nad 7NP. Strechy objektu sú odvodnené pomocou systému strešných vpustí napojených na zvody vedené inštalačnými šachtami do 1PP, kde sa pod stropom spájajú do prípojky dimenzovanej DN 100. Balkóny a lodžie v objekte nie sú napojené na systém dažd'ovej kanalizácie - sú odvodnené pomocou chrličov a odkvapníc.

D.4.1.5 Vykurovanie

Bytový dom je v rámci koordinácie bloku napojený na výmenníkovú stanicu tepla, ktorá je umiestnená v 2PP objektu B na severe bloku. Zdroj tepla pre výmenníkovú stanicu je teplovod, ktorého médium je para. Prípojka na výmeníkovú stanicu je vedená pod stropom $2 P P$, je vyrobená z pozinkovanej ocele s tepelnou izoláciou z minerálnej vlny a ústi do akumulačnej nádrže s nerezovým výmenníkom v miestnosti P2.02. Z 2PP je vedený hlavný rozvod cez prestup v strope miestnosti P2.02 do miestnosti P2.01, kde sa nachádza rozdel'ovač. Ten delí rozvod na 9 mensích, ktore su vedene vol'ne pod stropom 1PP do instalačych sachiet. Dalśie rozdel'ovače sa nachádzajú v šachtách v bytoch, kde delia rozvod pre podlahové kúrenie a radiátory. Podlahové kúrenie je navrhnuté zo systémových nopových dosiek s plastovými hadičkami prekrytými betónovou mazaninou s roznášacou kari sietou (skladba P14). Pod okná sú navrhnuté doskové radiátory s šírkou 100 mm . V družstevnom byte v 7NP je osadený podlahový konvektor

VSTUPNÝ PARAMETER			ZNAČKA	HODNOTA	JEDNOTKA
teplo od spotrebičov	$100 \mathrm{~W} / \mathrm{byt}$	x 18	$\mathrm{H}_{\text {spot }}$	1800	W
teplo od obyvatel'ov	$70 \mathrm{~W} / \mathrm{os}$	x 84	$\mathrm{H}_{\text {obyv }}$	5880	W
trvalý tepelný zisk	$\mathrm{H}+$	7680	W		
vonkajšia návrhová teplota v zime	Praha	Θ_{e}	-13	${ }^{\circ} \mathrm{C}$	
dížka vykurovacieho obdobia (v.o.)	Praha	d	216	$\mathrm{dní}$	
priemerná vonkajšia teplota vo v.o.	Praha	Θ_{em}	4	${ }^{\circ} \mathrm{C}$	
prevažujúca vnútorná teplota počas v.o.	$\Theta_{\text {im }}$	20	${ }^{\circ} \mathrm{C}$		
vonkajší objem budovy mimo podzemia	V	8338,5	$\mathrm{~m}^{3}$		
celková vonkajšia plocha budovy	A	1679,3	$\mathrm{~m}^{2}$		
podlahová plocha mimo podzemia	A_{c}	2561,8	$\mathrm{~m}^{2}$		
solárne tepelné zisky	$\mathrm{H}_{\mathrm{s}}+$	22514	$\mathrm{kWh} / \mathrm{rok}$		
intenzita vetrania s oknami	n	0,4	$\mathrm{~h}^{-1}$		
ročná potreba energie na vykurovanie	E	27,8	$\mathrm{kWh} / \mathrm{m}^{2}$		

D.4.1.5.1 Tepelné zisky a straty

Riešený objekt má obvodové steny navrhnuté s kontaktným zatepl'ovacím systémom ETICS s izolačnými doskami z minerálnej vlny. Budova má dva hlavné typy obvodovej steny zohl'adnené vo výpočte tepelných strát, jedna varianta je s vápennocementovou omietkou na 200 mm izolácie, druhá varianta je obklad keramickými pásikmy na 240 mm izolácie. Strecha objektu je navrhnutá plochá s extenzívnou zeleňou s tepelnou izoláciou hrubou $250 \mathrm{~mm} z \mathrm{ex}-$ pandovaného polystyrénu. V celom objekte sú navrhnuté okná od výrobcu Aluprof typu MB104 s tepelným prestupom celého okna v hodnote $0,53 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, vstupné dvere sú z rovnakého systému.

| VÝPOČET PRESTUPU TEPLA EXTENZİVNOU STRECHOU | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| VRSTVA | $\mathrm{d}[\mathrm{m}]$ | $\lambda_{\mathrm{u}}\left[\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{~K}^{-1]}\right]$ | $\mathrm{R}_{\mathrm{j}}\left[\mathrm{m}^{2} \mathrm{~K}^{-1}\right]$ | $0_{\mathrm{i}}\left[{ }^{\circ} \mathrm{C}\right]$ |
| izolačné vegetačné dosky | 0,050 | 0,037 | 1,351 | $-12,85$ |
| expandovaný polystyrén | 0,250 | 0,035 | 7,143 | $-7,68$ |
| monolitický železobetón | 0,200 | 1,430 | 0,140 | 19,62 |
| vápenná omietka | 0,015 | 0,880 | 0,017 | 20,15 |
| súčinitel' prestupu tepla konštrukcie | | U | 0,110 | $\left[\mathrm{~W}^{-2} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-1}\right]$ |

VÝPOČET PRESTUPU TEPLA OBVODOVOU STENOU S OMIETKOU								
VRSTVA	$\mathrm{d}[\mathrm{m}]$	$\lambda_{\mathrm{u}}\left[\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{~K}^{-1}\right]$	$\mathrm{R}_{\mathrm{j}}\left[\mathrm{m}^{2} \mathrm{~K}^{-1}\right]$	$0_{\mathrm{i}}\left[{ }^{\circ} \mathrm{C}\right]$				
vápenocementová omietka	0,025	0,990	0,025	$-12,78$				
dosky z minerálnej vlny	0,200	0,035	5,714	$-12,64$				
monolitický železobetón	0,250	1,430	0,175	18,79				
sádrová omietka	0,010	0,400	0,025	19,75				
súčinitel' prestupu tepla konštrukcie						U	0,160	$\left[\mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-1}\right]$

VÝPOČET PRESTUPU TEPLA OBVODOVOU STENOU S OBKLADOM								
VRSTVA	$\mathrm{d}[\mathrm{m}]$	$\lambda_{\mathrm{u}}\left[\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{~K}^{-1}\right]$	$\mathbf{R}_{\mathrm{j}}\left[\mathrm{m}^{2} \mathrm{~K}^{-1}\right]$	$0_{\mathrm{j}}\left[{ }^{\circ} \mathrm{C}\right]$				
keramický obkladový pásik	0,010	0,990	0,008	$-12,81$				
dosky z minerálnej vlny	0,240	0,035	5,714	$-12,78$				
monolitický železobetón	0,250	1,430	0,175	19,07				
sádrová omietka	0,010	0,400	0,025	19,88				
súčinitel' prestupu tepla konštrukcie						U	0,140	$\left[\mathrm{~W} \cdot \mathrm{~m}^{-2} \cdot \mathrm{~K}^{-1}\right]$

| VÝPOČET PRESTUPU TEPLA STROPOM NAD 1 PP | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| VRSTVA | $\mathrm{d}[\mathrm{m}]$ | $\lambda_{\mathrm{u}}\left[\mathrm{W} \cdot \mathrm{m}^{-1} \cdot \mathrm{~K}^{-1]}\right]$ | $\mathrm{R}_{\mathrm{j}}\left[\mathrm{m}^{2} \mathrm{~K}^{-1}\right]$ | $\boldsymbol{O}_{\mathrm{j}}\left[{ }^{\circ} \mathrm{C}\right]$ |
| polyvinylchlorid | 0,002 | 0,170 | 0,012 | 19,31 |
| betónová mazanina | 0,055 | 1,230 | 0,045 | 18,99 |
| kročajová izolácia z polystyrénu | 0,044 | 0,044 | 0,909 | 12,52 |
| monolitický železobetón | 0,200 | 1,430 | 0,14 | 11,53 |
| izolačné dosky z EPS granulátu | 0,200 | 0,061 | 3,279 | $-11,79$ |
| súčinitel' prestupu tepla konštrukcie | \mathbf{U} | 0,210 | $\left[\mathrm{~W}^{-2} \cdot \mathrm{~m}^{-1}\right]$ | |

TEPELNÉ STRATY BUDOVY	
KONŠTRUKCIA	TEP. STRATA [W]
obvodový plášt'	3,379
podlaha nad 1PP	1,058
strecha	1,171
výplne otvorov	5,116
tepelné mosty	1,108
vetranie	39,747
CELKOM	51,579

Tepelné zisky a straty, a ročná spotreba energie na vykurovanie boli vypočítané pomocou online kalkulačky Zelená úsporám a kalkulačky na výpočet prestupu tepla viacvrstvovou konštrukciou na portáli www.stavba.tzb-info.cz.

D.4.1.6 Chladenie

V bytovom dome nie je navrhnutý žiadny špeciálny systém chladenia. Na ochranu pred solárnymi tepelnými ziskami slúžia tieniace rolety inštalované nad väčšinou okien s výnimkou okien pri balkónoch, kde túto funkciu preberá vysúvacia markíza. V 7NP je na terase navrhnutá pergola s nastavitel'nými tieniacimi doskami. Všetky tieniace prvky sa ovládajú elektricky pomocou vypínačov osadených na stenách v ich blízkosti.

D.4.1.7 Vetranie

D.4.1.7.1 Prirodzené vetranie

Obytné miestnosti v bytoch sú vetrané prirodzene pomocou okien, ktoré sa dajú otvorit' na štrbinové vetranie, vetranie vetračkou a celým oknom. Dvere do kúpel'ní a záchodov majú v spodnej časti vetraciu mriežku pre umožnenie prúdenia vzduchu smerom do miestnosti.

D.4.1.7.2 Nútené vetranie

Pre nútený prívod a odvod vzduchu v objekte sú navrhnutých 5 vzduchotechnických jednotiek s rôznymi parametrami na základe ich špecifického účel'u. Okrem toho je v šachtách navrhnutých 5 potrubí s ventilárom pre odsávanie vzduchu z kúpel'ní, záchodov a priestorov sauny.

V kúpel'niach a záchodoch v bytoch a v priestoroch sauny v 7NP sú navrhnuté ventilátory, ktoré odsávajú znečistený vzduch potrubím v inštalačnej šachte nad strechu budovy, a 4 potrubia s ventilátorom na odsávanie vzduchu z digestorov s lapačom tuku. Prívodné potrubia digestorov sú dimenzované s DN150 mm. V zvislých potrubiach je do výpočtov uvažovaná rýchlost prúdenia vzduchu 5 metrov za sekundu. Prietok vzduchu na 1 kúpel'ñu je $50 \mathrm{~m}^{3} / \mathrm{h}$ a na 1 záchod $25 \mathrm{~m}^{3} / \mathrm{h}$.

NÁVRH PROFILU ODSÁVACIEHO POTRUBIA						
PRIESTOR		$\mathrm{V}_{\mathrm{p}}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{V}_{\mathrm{p}, \text { to }}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{v}[\mathrm{m} / \mathrm{s}]$	$\mathrm{A}\left[\mathrm{m}^{2}\right]$	PROFIL
kúpel'ňa	x 5	50	500	5	0,0277	$175 \times 175 \mathrm{~mm}$
záchod	x 5	25				

NÁVRH PROFILU ODSÁVACIEHO POTRUBIA						
SPOTREBIČ		$\mathrm{V}_{\mathrm{p}}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{V}_{\mathrm{p} \text {,tot }}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{v}[\mathrm{m} / \mathrm{s}]$	$\mathrm{A}\left[\mathrm{m}^{2}\right]$	PROFIL
digestor	x 5	300	1500	5	0,0833	$300 \times 300 \mathrm{~mm}$

Obidve chránené únikové cesty v budove majú navrhnutú svoju vlastnú vzduchotechnickú jednotku. Obe únikové cesty sú CHÚC typu A s kombinovaným spôsobom odvetrania, pričom čerstvý vzduch je umelo privádzaný a znečistený vzduch je ním tlačený cez samočinne otváravé okná. Pre takýto systém je z požiarneho hladiska nutné počítat's 10 -násobnou výmenou vzduchu v priestore za hodinu. V zvislých potrubiach je do výpočtov uvažovaná rýchlost' prúdenia vzduchu 10 metrov za sekundu.

Pre CHÚC 1-A.N1/N7 je prívod vzduchu zabezpečený vzduchotechnickou jednotkou Duplex umiestnenou na streche budovy, kde je čistý vzduch priamo nasávaný. Do budovy je vedený smerom dolu inštalačnou šachtou s vetracími otvormi v úrovni podlahy. Znečistený vzduch odchádza cez samočinné okno a samočinné dvere v 7NP.

Pre CHÚC 2-A.P3/N1 je prívod vzduchu zabezpečený vzduchotechnickou jednotkou Duplex umiestnenou v miestnosti P1.03. Cistý vzduch je nasávaný na fasáde pod parapetom okna do vnútrobloku v 1NP a k vzduchotechnickej jednotke je vedený priznaným potrubím na stene schodiska. Do priestoru schodiska je tlačený cez vetracie otvory pri vstupných dverách nad úrovňou podlahy

| NÁVRH PROFILU PRÍVODNÉHO POTRUBIA | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PRIESTOR | $\mathrm{V}\left[\mathrm{m}^{3}\right]$ | $\mathrm{n}\left[\mathrm{h}^{-1}\right]$ | $\mathrm{V}_{\mathrm{p}}\left[\mathrm{m}^{3} / \mathrm{h}\right]$ | $\mathrm{v}[\mathrm{m} / \mathrm{s}]$ | $\mathrm{A}\left[\mathrm{m}^{2}\right]$ | PROFIL |
| CHÚC 1-A.N1/N7 | 590,12 | 10 | 5901,2 | 10 | 0,1639 | $450 \times 400 \mathrm{~mm}$ |
| | 203,02 | | 2030,2 | | 0,0563 | $300 \times 200 \mathrm{~mm}$ |

Pre odvetranie hromadných garáží je navrhnutá vzduchotechnická jednotka s rekuperačným výmenníkom Duplex umiestnená v miestnosti P2.03. Čerstvý vzduch pre tento systém je nasávaný na fasáde pod parapetom okna do vnútrobloku v 1NP a k vzduchotechnickej jednotke je vedený priznaným potrubím na stene schodiska vedl'a potrubia pre CHÚC 2-A.P3/N1. V priestoroch garáže sú pod stropom vedené potrubia s mrežami pre prívod čerstvého vzduchu a potrubia pre odsatie znečisteného vzduchu. Znečistený vzduch je po rekuperácii odvedený na strechu objektu v šachte vedl'a potrubia pre CHÚC 1-A.N1/N7. Vzduchotechnika pre hromadné garáže je dimenzovaná na základe počtu parkovacích státí, kde na jeden automobil pripadá nutný prietok vzduchu $150 \mathrm{~m}^{3} / \mathrm{h}$.

NÁVRH PROFILU POTRUBIA PRE HROMADNÉ GARÁŽE								
PRIESTOR	$\mathrm{V}\left[\mathrm{m}^{3}\right]$	$\mathrm{Q}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	PS	$\mathrm{V}_{\mathrm{p}}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{v}[\mathrm{m} / \mathrm{s}]$	$\mathrm{A}\left[\mathrm{m}^{2}\right]$	PROFIL	
hromadné garáže	2848,8	150	36	5400	10	0,150	prívod $500 \times 300 \mathrm{~mm}$	
			odvod $400 \times 400 \mathrm{~mm}$					

Pre odvetranie prenajímatel'ných priestorov je vyhradený priestor pre kompaktné vzduchotechnické jednotky zabudovatel'né do podhl'ahu. Odvetranie a nasávanie týchto jednotiek bude prebiehat' výduchmi na fasáde. Ich návrh nie je súčastou návrhu budovy, nakol'ko kúpa a výber vzduchotechnickej jednotky bude závisiet' na druhu prevádzky nájomníka.

Miestnost' na odpady je odvetrávaná pomocou priemyselného ventilátoru s dvojpólovým motorom a tepelnou poistkou. Ventilátor vytvára podtlak v miestnosti a posiela znečistený vzduch štvorhranným potrubím nad strechu objektu. Čerstvý vzduch je zabezpečený vd'aka medzerám v dveriach z tahokovu.

NÁVRH PROFILU ODSÁVACIEHO POTRUBIA					
PRIESTOR	$\mathrm{V}_{\mathrm{p}}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{V}_{\mathrm{p}, \text { tot }}\left[\mathrm{m}^{3} / \mathrm{h}\right]$	$\mathrm{v}[\mathrm{m} / \mathrm{s}]$	$\mathrm{A}\left[\mathrm{m}^{2}\right]$	PROFIL
miestnost na odpady	50	50	5	0,00277	$136 \times 112 \mathrm{~mm}$

D.4.1.8 Elektrické rozvody

Dom je napojený prípojkou na verejný silnoprúd vedený v ulici na východnej strane budovy. Prípojková skrinka je umiestnená v závetrí pod zvončekmi pri hlavnom vchode do objektu. Odtial' je vedený kábel do hlavného domového rozvádzača, ktorý je umiestnený oproti výtahu v 1NP, na ktorý sú napojené podlažné rozvádzače. Podlažné rozvádzače sú prístupné z haly a sú na ne pripojené bytové rozvádzače s poistkami umiestnené na stene pri vstupných dverách do bytu. V podzemnych podlažiach sú elektrorozvody vedené pod stropom vzzlaboch. V miestnosti P3.02 je umiestnený záložný zdroj energie a riadiaca jednotka výťahu. Podlažné rozvádzače v podzemných podlažiach sú umiestnené na stene pri výtahu.

Celý objekt je chránený proti blesku vonkajšími hromozvodmi, ktoré sú uzemnené na dvoch miestach vo vnútrobloku. Vnútorné rozvody sú chránené ekvipotenciálnym systémom.

Zásuvkové obvody sú istené 16A poistkami a majú maximálne 10 vývodov. Pre práčky, umývačky riadu a vzduchotechnické jednotky sú navrhnuté samostatné jednofázové obvody. Rúry na pečenie sú napojené na samostatné trojfázové obvody. Elektrorozvody pre umelé osvetlenie sú istené 10A poistkami a majú maximálne 10 vývodov. Jednotlivé svietidlá sa ovládajú pomocou vypínačov na stenách vo výske $1,3 \mathrm{~m}$ a 15 cm od rámu dverí. Zásuvky pre elektrospotrebiče v obytných miestnostiach sú umiestnené na stenách vo výške $0,3 \mathrm{~m}, \mathrm{v}$ kúpel'niach vo výške $1,3 \mathrm{~m}$ so zvýšenou odolnostou proti vlhkosti. V 7NP sú zásuvky aj v exteriéri a sú chránené plastovou krytkou.

D.4.1.9 Odpadové hospodárstvo

Odvoz odpadu z bytového domu je zabezpečený firmou Komwag s.r.o., s ktorou má družstvo uzavretú zmluvu na dobu neurčitú. Nádoby na odpad sú umiestnené v miestnosti N1.05. Dohodnutá frekvencia odvozu odpadu je $2 x$ za týždeň. Počet a objem nádob na komunálny odpad vychádza z následujúceho výpočtu podl'a odporučenia firmy Komwag:

Zdroj odpadu	Počet osôb podl'a PD	Objem/týždeň	Nádoby
bytový dom	36 osôb (x28l/t)	1008 litrov	3×2401
prenajímané priestory	15×2 osôb (x28l/t)	840 litrov	2x 2401

Zber triedeného odpadu je riešený koordinovane v rámci celého bloku. V bloku sú zriadené tri stanoviská nádob (po 1100l) na triedený odpad, ktoré sú v dochádzkovej vzdialenosti od bytového domu.

voda studená VODA TEPLÁ VODA TEPLÁ CIRKULAČNA voda na kúrenie voda vykurovacia cirkulac̃ná voda požiarna KANALIZÁCIA SPLAS̃KOVÁ kanalizácia daždoová Rozvody elektriny RÁduS pokrytia sprinklerom prípojka vodovodná PRípojka splaškovej kanalizácie pripojka dažd̃ovej kanalizácle PRÍpojka silnoprúdu ODLAHOVÉ KÚRENIE doskový radiátor rebrikový radiátor podlahoví Konvektor SaUnová pec elektrická ZÁsobnik vYkurovacej vody hLAVNY UZÁVER VODY V OBJEKTE VODOMERNÁ ZOSTAVA PODRUZ̈NÝ VODOMER WंTOKOVÝ VENTIL rozdelovač / zberač zásobnik na teplú vodu PRIETOKOVY OHRIEVAČ VOD PODLAHOVY̌ ODTOKOVY̌ ŽLAB KANALIZAČNÁ ČISTIACA TVAROVKA zásobník na pożiarnu vodu Expanzná tlaková nádoba SKRINKA S POŽ. HYDRANTOM ZZT POTRUBIE ODVÁDZANY̌ VZDUCH ZZT POTRUBIE PRIVÁDZANY゙ VZDUCH VZTUCHOTECHNICKÁ JEDNOTKA domový rozvádzač podLažný rozvádzac̃ bytový rozvádzač ZALOŻNY ZDROJ ENERGIE RIADIACA JEDNOTKA VY̌TAAHU PRípoJkové SkRINKA STREŠNÁ VPUSŤ
fakulta

BAKALÁRSKA PRÁCA
AR 2023/2024 LETNÝ SEMESTER

ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Dagmar Richtrová
AUTOR
Max Neradný
PROJEKT
DRUŽSTVO NOVŠIE DVORY

> TECHNICKÉ
> ČASŤ
> ZARIADENIE
> BUDOVY

> PÔDORYS
> 3PP

D.4.2.2	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

voda studená

 VODA TEPLÁ VODA TEPLÁ CIRKULAC̃NA voda na kúrenie voda vykurovacia cirkulac̃ná voda požiARna KANaLIzácia splas̃ková kanalizácia dažõová rozvody elektriny RÁdus pokrytia sprinklerom prípojka vodovodná pripojka dažd̃oveJ kanalizácle prípojka silnoprúdu podLahové Kúrenie doskovÝ radiátor REbríkovÝ radiátor PODLAHOVÝ KONVEKTOR SAUNOVÁ PEC ELEKTRICKÁ zÁsobnik vykurovacej vodr HLAVNY̌ UZÁVER VODY V OBJEKTE vodomerná zostava PODRUZ̃NY̌ VODOMER vítokový ventil rozdelovač / zberač zásobnik na teplú vodu prietokovy ohrievač vody PODLAHOVÝ ODTOKOVÝ ŽLAB KANALIZAČNÁ ČISTIACA TVAROVKA zÁsobník na požlarnu vodu EXPANZNÁ TLAKoVÁ NÁDobA SKRINKA S POŽ. HYDRANTOM VZT POTRUBIE ODVÁDZANÝ VZDUCH VZT POTRUBIE PRIVÁDZANY゙ VZDUCH VZTUCHOTECHNICKÁ JEDNOTKA domový rozvádzač podlažný rozvádzač bytový rozvádzač ZÁLožNÝ ZDROJ ENERGIE RIADIACA JEDNOTKA VİṪAHU PRípoJková SkRINKA STREŠNÁ VPUSŤFAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024 LETNÝ SEMESTER

ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDOUCÍ
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Dagmar Richtrová
AUTOR
Max Neradný

DRUŽSTVO NOVS̆IE DVORY

TECHNICKÉ
ZARIADENIE
BUDOVY

PÔDORYS 1NP	
D.4.2.5	VÝKRES
$1: 100$	Čí́SLO
$2 \times A 4$	MIERKA
12.12 .2023	FORMÁT

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Dagmar Richtrová
AUTOR
Max Neradný

DRUŽSTVO NOVŠIE DVORY
$\left.\begin{array}{ll}\text { TECHNICKÉ } & \text { ČAŠ̌ } \\ \text { ZARIADENIE } \\ \text { BUDOVY }\end{array}\right]$

D.4.2.6	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

voda studená VODA TEPLÁ VODA TEPLÁ CIRKULAČNA VODA NA KÚRENIE Voda vYkurovacia cirkulac̃ná voda požiarna KANALIZÁCIA SpLAšková kanalizácia dažõová rozvody elektriny rádius pokrytia sprinklerom prípojka vodovodná PRípojka splaškovej kanalizácie PRípojka daž̃ove kanalizácie prípojka silnoprúdu podLahové Kúrenie Doskový radítor rebrígový radiátor PODLAHOVÝ KONVEKTOR SAUNOVÁ PEC ELEKTRICKÁ zásobnik vykurovacej vody HLAVNÝ UZÁVER VODY V OBJEKTE VODOMERNÁ ZOSTAVA PODRUZ̃NY̌ VODOMER vítokový ventil rozdelovač / zberač zásobnik na teplú vodu prietokovy ohrievač vody PODLAHOVÝ ODTOKOVÝ ŽLAB kanalizačná čistiaca tvarovka zÁsobník na požlarnu vodu EXpanzná tlaková nádoba SKRINKA S POŽ. HYDRANTOM VZT POTRUBIE ODVÁdZANÝ VZDUCH VZT POTRUBIE PRIVÁDZANY゙ VZDUCH VZTUCHOTECHNICKÁ JEDNOTKA domový rozvádzač podLažný rozvádzač bytový rozvádzač ZÁLoz̃NÝ ZDROJ ENERGIE RIADIACA JEDNOTKA VÍTAAHU prípojková SKRINKA STREŠNÁ VPUSŤ

FAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024
LETNÝ SEMESTER
ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Dagmar Richtrová
AUTOR
Max Neradný
PROJEKT
DRUŽSTV0 Novsile dVory

> TECHNICKÉ
> ZARIADENIE BUDOVY

> PÔDORYS
> 3NP

D.4.2.7	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

voda studená

 voda teplá VODA TEPLÁ CIRKULAČNA voda na kúrenie Voda vykurovacia cirkulac̃ná voda požiarna KANALIZÁCIA SPLAŠKOVÁ analizácia daz̃ŏová RoZVODY ELEKTRINY RÁduS PokRYTIA SPRINKLEROM prípojka vodovodná Rípojka splaškovej kanalizácie PRípojka dažd̃ove kanalizácie prípojka silnoprúdu ODLAHOVÉ KÚRENIE DoskovÝ Radiátor rebríkový radiátor pODLAHOVÝ KONVEKTOR SAUNOVÁ PEC ELEKTRICKÁ ZÁsobník vYKurovacej vody LAVNY̌ UZÁVER VODY V OBJEKTE VODOMERNÁ ZOSTAVA PODRUŽNÝ VODOMER พ่TOKOVÝ VENTLL Rozdelovač / zberač Zásobník na teplú vodu PRIETOKOVÝ OHRIEVAČ VODY ODLAHOVÝ ODTOKOVÝ ŽLAB KANALIZAČNÁ ćlstiaca tvarovka zásobník na pożiarnu vodu XPANZNÁ TLAKOVÁ NÁDOBA KRINKA S Pož. Hydrantom ZZT POTRUBIE ODVÁDZANÝ VZDUCH ZZT POTRUBIE PRIVÁDZANY̌ VZDUCH VZTUCHOTECHNICKÁ JEDNOTKA domový rozvádzač odolažný rozvádzač bytový rozvádzač ZÁLOŻNY ZDROJ ENERGIE IIADIACA JEDNOTKA VÏT̈AHU prípoJková SKRINKA STREŠNÁ VPUSŤFAKULTA

BAKALÁRSKA PRÁCA
AR 2023/2024 LETNÝ SEMESTER

ATELIÉR

Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Dagmar Richtrová
AUTOR
Max Neradný
PROJEKT
DRUŽSTVO NOVŠIE DVORY

TECHNICKÉ	ČASŤ
ZARIADENIE	
BUDOVY	
PÔDORYS VÝKRES	
7NP	

D.4.2.8	ČÍSLO
$1: 100$	MIERKA
$2 \times A 4$	FORMÁT
12.12 .2023	DÁTUM

voda studená Voda teplá cirkulac̃ná voda na kúrenie voda požilarna kanalizácia splas̃ková kanalizácia dažd̃ová RozVody elektriny prípojka vodovodná prípojka silnoprúdu podLahové kúrenie doskovÝ radiátor REbríkovÝ radiátor PODLAHOVÝ KONVEKTOR SAUNOVÁ PEC ELEKTRICKÁ VODOMERNÁ ZOSTAVA PODRUZ̃NY̌ VODOMER Vítokový VENTLL rozdelovač / zberač zásobnik na teplú vodu domový rozvádzač podLažný rozvádzač bytový rozvádzač ZÁLožNÝ ZDROJ ENERGIE PRípoJkové SkRINKA STREŠNÁ VPUSŤ
voda vykurovacia cirkulac̃ná RÁdus pokrytia sprinklerom PRÍpoJKa SpLAškovej kanalizácie PRípoJka daz̃õovej kanalizácie zÁsobnik vykurovacej vodr HLAVNÝ UZÁVER VODY V OBJEKTE PRIETOKOVY̌ OHRIEVAČ VODY podLahový odtokový žlab kanalizačná čistiaca tvarovka zásobník na požlarnu vodu EXPANZNÁ TLAKOVÁ NÁdobA SKRINKA S POŽ. HYDRANTOM VZT POTRUBIE ODVADZANY̌ VZDUCH VZT POTRUBIE PRIVÁDZANY゙ VZDUCH VZTUCHOTECHNICKÁ JEDNOTKA RIADIACA JEDNOTKA VİṪAHU

BAKALÁRSKA PRÁCA
AR 2023/2024 LETNÝ SEMESTER

ATELIÉR
Atelier Kohout-Tichý
ÚSTAV
15118 Ústav nauky o budovách
VEDÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
KONZULTANT
Ing. Dagmar Richtrová
AUTOR
Max Neradný
PROJEKT
DRUŽSTVO NOVŠIE DVORY
$\left.\begin{array}{lr}\begin{array}{c}\text { TECHNICKÉ } \\ \text { ZARIADENIE } \\ \text { BUDOVY }\end{array} & \\ \text { ČASŤ } \\ \text { PÔDORYS } \\ \text { STRECHY }\end{array}\right]$
E.1.1 Návrh postupu výstavby riešeného pozemného objektu v náväznosti na ostatné stavebné objekty stavby s odôvodnením. Vplyv realizácie stavby na okolité stavby a pozemky.
E.1.1.1 Základný opis a údaje o stavbe
E.1.1.2 Základná charakteristika staveniska
E.1.1.3 Zoznam pozemkov, ktorých sa stavba dotýka
E.1.1.4 Vecné a časové väzby stavby
E.1.1.5 Zoznam stavebných a búraných objektov
E.1.1.6 Postup vystavby SO 02
E.1.1.7 Zásobovanie stavebným materiálom

ČASṪ E

ZȦSADY ORGANIZȦCIE VÝSTAVBY

BAKALÁRSKA PRÁCA:
VYPRACOVAL:
VEDÚCI PRÁCE:
KONZULTANTI:

SEMESTER:
ATELIÉR:

Družstvo Novšie Dvory
Max Neradný
prof. Ing. arch. Michal Kohout doc. Ing. arch. David Tichý, Ph.D. Ing. arch. Jan Hlavín, Ph.D. doc. Dr. Ing. Martin Pospíšil, Ph.D.
Ing. Marta Bláhová
Ing. Dagmar Richtrová
Ing. Radka Navrátilová, Ph.D letný semester 2023/2024 Kohout-Tichý

FAKULTA
ARCHITEKTURY ČVUTV PRAZE

E.2.1 Koordinačná situácia 1:200
E.2.2 Situácia zariadenia staveniska 1:200
E.2.3 Betonáž zvislých konštrukcií 1:100
E.2.4 Betonáž vodorovných konštrukcií 1:100
E.2.5 Skladovanie debnenia 1:50/100
E.2.6 Pôdorys stavebnej jamy 1:100
E.2.7 Rezy stavebnej jamy 1:100
E.1.1 Návrh postupu výstavby riešeného pozemného objektu v náväznosti na ostatné stavebné objekty stavby s odôvodnením. Vplyv realizácie stavby na okolité stavby a pozemky.

E.1.1.1 Základný opis a údaje o stavbe

Riešený bytový dom sa nachádza v Prahe, presnejšie v mestskej časti Praha 4 - Lhotka Novovzniknutá parcela, ktorú si družstvo zakúpilo, je umiestnená v prevažne obytnom bloku, ktorý bude mat' poloverejný priechodný vnútroblok. Nadmorská výška parcely sa pohybuje medzi 303 až 304 m.n.m (b.p.v) a klesá smerom na sever. Fasády sú orientované na východ (námestie) a na západ (vnútroblok), zo severu aj z juhu bude stavba susedit' s d'alšími bytovými domami. Hlavný vstup do objektu je z námestia, vedl'ajší z vnútrobloku poprípade z hromadných garáží. Stavba má 7 nadzemných a 3 podzemné podlažia. Objekt má obdížnikový pôdorys $18 \times 21,2 \mathrm{~m}$. Siedme nadzemné podlažie je ustúpené a nachádza sa tu prevádzková strecha. Strecha objektu je plochá so substrátom a extenzívnou zeleňou.

Plocha parcely pre bytový dom:	530,00	$\mathrm{~m}^{2}$
Zastavaná plocha parcely:	381,60	$\mathrm{~m}^{2}$
Spevnené plochy parcely:	58,70	$\mathrm{~m}^{2}$
Nespevnené plochy parcely:	89,70	$\mathrm{~m}^{2}$
Hrubá podlahová plocha:	2561,83	$\mathrm{~m}^{2}$
Zastavaný objem:	8338,50	$\mathrm{~m}^{3}$
Nadmorská výška objektu:	$\pm 0,000=303,880$ m.n.m. (b.p.v)	
Výška atiky objektu:	$+23,500=327,380$ m.n.m. (b.p.v)	
Projektovaný počet obyvatel'ov:	36 osôb	
Počet parkovacích státí:	36	státí

E.1.1.2 Základná charakteristika staveniska

Stavenisko sa nachádza v oblasti, v ktorej bude prebiehat' development v mierke celej štvrti, takže počas výstavby nebudú v tesnej blízkosti žiadne obývané budovy. Do priestoru staveniska zasahuje niekol'ko existujúcich objektov, ktoré bude pred začatím výstavby nutné zdemolovat. Stavenisko bude koordinované pre celý blok, ktorého súčastou je riešený stavebný objekt E (SO 02 podl'a projektovej dokumentácie). Prístup na stavenisko bude zabezpečený novou cestnou komunikáciou podl'a územnej štúdie Nové Dvory.

E.1.1. 3

Zoznam pozemkov, ktorých sa stavba dotýka
Výstavbe nového developmentu územia predchádza úprava súčasnej katastrálnej situácie a vyriešenie nových majetkových pomerov medzi pôvodnými vlastníkmi a sprostredkovatel'om HI. mestom Praha. Takže v čase dokončenia sa stavba nachádza výhradne na pozemkoch v majetku investora (družstva). Pri realizácii stavby však dôjde k dočasnému záboru na pozemku vo vlastnictve hl. m. Praha, na ktorom je navrhnutá komunikácia a pristup vozidiel k stavenisku. Zariadenie staveniska sa umiestní do priestoru vnútrobloku, ktorý je pozemkovo delený medzi jednotlivé parcely bloku a verejný priestor v majetku mesta.

Po dokončení prípravy územia podl'a územnej štúdie hlavným investorom a koordinátorom (hl.m. Praha), si investor projektu (družstvo) vezme pôžičku na realizáciu stavby. Realizácia stavby bude prebiehat' v dvoch etapách:

Etapa 1 - Koordinovaná stavba
Krok 1 - Vytýčenie bloku a parciel
Krok 2 - Zriadenie a zariadenie staveniska
Krok 3 - Výkopové práce a zaistenie stavebnej jamy
Krok 4 - Základy a hrubá stavba podzemných podlaží
Krok 5 - Napojenie prípojok
Etapa 2 - Jednotlivé stavebné objekty
Krok 1 - Hrubá stavba nadzemných podlaží
Krok 2 - Stavba strechy
Krok 3 - Hrubé vnútorné konštrukcie a montáž výplní otvorov

- Zateplovanie stavby a úprava vonkajších povrchov
- Realizácia spevnených plôch a operných stien na pozemku

Krok 4 - Dokončovacie konštrukcie
Krok 5 - Čisté terénne úpravy
Zoznam stavebných a búraných objektov
Hrubé terénne úpravy
Bytový dom
Prípojky

33a \quad Vodovod
3b \quad Splašková kanalizácia
3c
Silnoprúd
Akumulačná nádrž
3e

BO 01
BO 02
BO 03
BO 04

Tenisové kurty - sever Tenisové kurty - juh Tenisové kurty - západ Asfaltové parkovisko

SO 05a Oporná stena - sever
 SO 05b Oporná stena - juh

SO 06 Čisté terénne úpravy

Výstavba začne po dokončení prípravy územia, ked' TSK zrealizuje prístupové komunikácie. V tejto fáze dojde k demolícii súčasných objektov a vytýčeniu nových parcel na základe platného územného plánu.

Samotná stavba bytového domu je rozdelená na dve etapy. Prvá etapa je koordinovaná výstavba podzemných podlaží, ktoré sú spojené po obvode celého bloku. Pred začatím výkopovych prác sa navozí zariadenie staveniska do priestoru vnútrobloku, pripravia sa sociálne zariadenia, prípojky pre stavenisko a stavebný žeriav. V d'alšom kroku sa spravia vrty pre nosné profily záporového paženia a odčerpávacie studne po obvode budúcej stavebnej jamy Až ked' sa v tomto zmysle pripraví celý obvod bloku, začnú sa výkopové práce. Paženie sa bude postupne zaist'ovat' pomocou horninových kotiev v štyroch výškových úrovniach, vždy nad podlahou buducich podlazi. Po dosiahnuti zakladovej spary sa zacnu realizovat vrty pre mikropiloty, ktoré sa votknú do únosného podložia. Po osadení mikropilôt sa zrealizuje podkladný betón, na ktorý sa bude neskôr nanášat' hydroizolačné súvrstvie. Podobný proces prebehne aj na stenách stavebnej jamy, kde sa aplikuje striekaný betón na konštrukciu záporového paženia. Po dokončení asfaltovej hydroizolácie na spomínaných betónových konštrukciách sa na nu polozia bentonitove rohoze. Nasleduje realizacia zakladovej dosky a podzemnych stien z vodostavebného betónu. Po technologickej prestávke sa doplnia prefabrikované schodiskové ramená a výtłahová šachta, ktorá je od zvyšku monolitických konštrukcií oddilatovaná. Pri dokončení jednotlivých podzemných podlaží sa musí uvolnit' napätie z horninových kotiev v danej úrovni. Pri dokončovaní 1PP sa domy napoja na prípojky. V tejto fáze sa zrealizujú prevadzkove strechy nad dvoma usekmi podzemných podlaží na severovýchode a juhozápade bloku.

V tomto momente končí koordinovaná etapa a začne etapa výstavby hrubej stavby nadzemných podlaží samostatných stavebných objektov. Po dokončení strechy objektu sa začnú realizovat' hrubé vnútorné konštrukcie a súčasne s tým montáž okien, dverí a zateplovanie fasady a uprava povrchu fasady. Ina skupina robotnikov môze súbezne realizovat oporne steny a spevnené plochy na pozemku, pričom tu dojde aj k osadeniu akumulačnej nádrže a jej napojenie na prípojku dažd'ovej kanalizácie. Na záver prídu dokončovacie konštrukcie, osadzovanie sanity a čisté terénne úpravy. Po demontáži zariadenia staveniska, žeriavu a záborov, prebehne oprava a čistenie verejných komunikácií znehodnotených počas výstavby. V priestore vnútrobloku prebehnú koordinovane sadove úpravy, okrem ineho aj realizacia retenčnych nadrží a vsakovacích objektov.

Stavba bude zásobovaná čerstvým betónom, dovezeným z najbližšej betonárne vzdialenej $5,1 \mathrm{~km}$ od staveniska. Zvolená betonáreň (Zapa Beton, a.s.) sa nachádza na adrese Vídeňská 495, 14200 Praha - Písnice, odkial bude betón dovážaný v priebehu 10-15 min. autodomiešavačmi, ktoré zabezpečuje betonáreň.

Pre presun a prácu s betónom na stavenisku je zabezpečená bádia na betón s rukávom od dodávatel'a stavo-shop.cz, s objemom $0,5 \mathrm{~m}^{3}$ a vlastnou hmotnostou 115 kg . V naplnenom stave bude bádia vážit' 1365 kg . Rozmery bádie sú $1,25 \times 1,05 \times 0,88 \times 1,2 \mathrm{~m}$.

E.1.2 Návrh zdvíhacích prostriedkov, návrh výrobných, montážnych a skladovacích

 plôch pre technologické etapy zemnej konštrukcie, hrubá spodná a vrchná stavbaPre návrh zdvíhacích prostriedkov a rozmerov skladovacích plôch je najprv nutné určit' betonárske zábery hrubej stavby. Pre presun a prácu s betónom na stavenisku je zabezpečená bádia na betón s rukávom, od dodávatel'a stavo-shop.cz, s objemom $0,5 \mathrm{~m}^{3}$ a vlastnou hmotnost'ou 115 kg . V naplnenom stave bude bádia vážit 1365 kg . Rozmery bádie sú $1,25 \times 1,05 \times 0,88 \times 1,2$ m . Za osem hodinovú pracovnú smenu stihne žeriav spravit' 96 otočení, čo znamená, že maximálny denný záber je $48 \mathrm{~m}^{3}$ betónu. Na základe toho sú navrhnuté zábery vo výkresoch E.2.3 a E.2.4. Hrana medzi zábermi vodorovných konštrukcií je umiestnená v ¼ dížky stropu.
E.1.2.1

Návrh debnenia

Na vodorovné konštrukcie bude použitý trojdielny systém SKYDECK od výrobcu PERI Systém tvoria dosky, nosníky a stojiny skladované v paletách podla odporúčaní výrobcu. Použité dosky SKYDECK majú rozmery $1500 \times 750 \mathrm{~mm}$, stojiny sú teleskopické a pri montovaní debnenia budú nastavené na požadovanú výšku betónovaného stropu. Podl'a výpočtu bude na dva zábery vodorovnej betonáže nutné použit 317 ks dosiek a 104 stojín a nosníkov. Na okraji betónovanej dosky budú použité lávky proti pádu SKYDECK, ktoré sa osadia na presah nosníka.

Na zvislé konštrukcie bude použitý systém LIWA od výrobcu PERI s doskami troch rôznych rozmerov ($500,1000,1500 \mathrm{~mm}$). Dosky LIWA majú jednotnú hrúbku 250 mm a kvôli bezpečnosti pri manipulácii je ich možné skladovat' maximálne do výšky $1,5 \mathrm{~m}$.

Vo výkrese E.2.5 je graficky znázornené skladovanie aj použitý počet dielov debnenia na dva najväčšie zábery zo zvislých aj vodorovných konštrukcií. V ilustrácii nižšie je výpis všetkých paliet, pre ktoré je dimenzovaná skladovacia plocha.

KONSTRUKČNE VÝROBNY̌ SYSTÉM

plocha typického podlažia	($A_{\text {p }}$)	$=385,52 \mathrm{~m}^{2}$
plocha otvorov v typ. podlaží	($\mathrm{A}^{\text {p }}$)	= $28,94 \mathrm{~m}^{2}$
betónovaná plocha	($\mathrm{A}_{0}-\mathrm{A}_{0}$)	= 356,58 m^{2}
objem betónu vod. kcí (h. 0,2m)	$\left(A_{p}-A_{o}\right) \times 0,2$	$=71,316 \mathrm{~m}^{3}$
maximum betónu v 1 smene	$(12 \times 8 \times 0,5)$	$=48 \mathrm{~m}^{3}$
počet záberov na typ. podlažie	(71,316/48)	= 2 zábery
BETȮN A BȦDIA		
hmotnost' zvolenej bádie	$\left(m_{b}\right)$	$=115 \mathrm{~kg}$
objem zvolenej bádie	$\left(V_{b}\right)$	$=0,5 \mathrm{~m}^{3}$
hustota betónu	(p)	$=2500 \mathrm{~kg} / \mathrm{m}^{3}$
hmotnost' $0,5 \mathrm{~m}^{3}$ betónu	($\mathrm{px} 0,5$)	$=1250 \mathrm{~kg} / \mathrm{m}^{3}$
hmotnost' plnej bádie	(115+1250)	$=1365 \mathrm{~kg}$

debnenie pre vodorovné konštrukcie

plocha 1 panelu SKYDECK	$(1,5 \times 0,75)$	$=1,125 \mathrm{~m}^{2}$
množstvo panelov na max. záber	$(191,26 / 1,125)$	$=170 \mathrm{ks}$
množstvo panelov na 2 zábery	$(356,58 / 1,125)$	$=317 \mathrm{ks}$
množstvo stojok SKYDECK na m²	$(1 / 3,45)$	$=0,29 \mathrm{ks}$
množstvo stojok na max. záber	$(191,26 \times 0,29)$	$=56 \mathrm{ks}$
množstvo stojok na 2 zábery	$(356,58 \times 0,29)$	$=104 \mathrm{ks}$
max. hmotnost' palety panelov (48ks)	$(48 \times 13,7)$	$=657,6 \mathrm{~kg}$
max. hmotnost' palety stojok (25ks)	$(25 \times 19,4)$	$=485,0 \mathrm{~kg}$
max. hmotnost' palety nosníkov (25ks)	$(25 \times 15,6)$	$=390,0 \mathrm{~kg}$
DEBNENIE PRE ZVISLÉ KONŠTRUKCIE		
		$=35 \mathrm{~kg} / \mathrm{m}^{2}$
hmotnost' debnenia LIWA na m²		$=147,0 \mathrm{~kg}$
hmotnost' vel'kého panelu (2,8x1,5m)	$(4,2 \times 35)$	$=98,0 \mathrm{~kg}$
hmotnost' stredného panelu $(2,8 \times 1,0 \mathrm{~m})$	$(2,8 \times 35)$	$=49,0 \mathrm{~kg}$
hmotnost' malého panelu (2,8x0,5m)	$(1,4 \times 35)$	$=6 \mathrm{ks} \mathrm{do} 1,5 \mathrm{~m}$
max. množstvo prvkov pri skladovaní do $1,5 \mathrm{~mm}$	$(1,5 / 0,25)$	

E.1.2.2 Návrh a riešenie žeriavu

Na stavenisku bude zmontovaný samostavitel'ný žeriav od výrobcu Liebherr, model 71K s vyložením 37 m a výškou $39,1 \mathrm{~m}$. Nosnost' žeriavu na vzdialenost' 35 m je 1920 kg . Podstava žeriavu s rozmermi $4,5 \times 4,5 \mathrm{~m}$ je vzdialená 4 m od hrany stavebnej jamy, $4,15 \mathrm{~m}$ k najbližšej hrane fasády. Návrh počíta s hmotnostnou aj vzdialenostnou rezervou.

Vyložení	Max. kg		Nos m / kg	snost		2,9/3	3,5 m													
			18,0	20,0	22,0	24,0	26,0	28,0	29,0	30,0	31,0	32,0	33,0	34,0	35,0	36,0	37,0	38,0	39,0	40,0
45,0	$\begin{aligned} & 3,3-20,3 \\ & 3050 \end{aligned}$		3050	3050	2790	2530	2310	2120	2040	1960	1890	1820	1750	1690	1630	1580	1530	1480	1430	990
42,0	$\begin{aligned} & 3,3-22,1 \\ & 3050 \end{aligned}$		3050	3050	3050	2780	2540	2340	2240	2160	2080	2000	1930	1870	1800	1750	1690	1640	1590	1540
37,0	$\begin{aligned} & 30,3-23,3 \\ & 3050 \end{aligned}$		3050	3050	3050	2950	2700	2480	2390	2290	2210	2130	2060	1990	1920	1860	1800			
31,0	$\begin{aligned} & 3,3-25,0 \\ & 3050 \end{aligned}$		3050	3050	3050	3050	2920	2690	2590	2490	2400									

TABUL'KA BREMIEN			
BREMENO	HMOTNOŠ̌		VZDIALENOSテ̌
bádia s betónom (0,5m ${ }^{3}$)	$115+1250 \mathrm{~kg}$	$1,365 \mathrm{t}$	35 m
paleta s panelmi SKYDECK (48ks)	$48 \times 13,7 \mathrm{~kg}$	$0,657 \mathrm{t}$	35 m
paleta so stojkami SKYDECK (25ks)	$25 \times 19,4 \mathrm{~kg}$	$0,485 \mathrm{t}$	35 m
paleta s nosníkmi SKYDECK (25ks)	$25 \times 15,6 \mathrm{~kg}$	$0,390 \mathrm{t}$	35 m
paleta s panelmi LIWA 0,5m (6ks)	$6 \times 49 \mathrm{~kg}$	$0,294 \mathrm{t}$	35 m
paleta s panelmi LIWA 1,0m (6ks)	$6 \times 98 \mathrm{~kg}$	$0,588 \mathrm{t}$	35 m
paleta s panelmi LIWA 1,5m (6ks)	$6 \times 147 \mathrm{~kg}$	$0,882 \mathrm{t}$	35 m
SMERODAJNÉ BREMENO: BÁDIA	1365 kg		35 m

E-4b

E.1.3 Návrh zaistenia a odvodnenia stavebnej jamy.

Návrh stavebnej jamy musí rešpektovat' zistenia z hydrogeologického prieskumu (archívny vrt od Ceskej geologickej služby), ktoré hovoria, že hladina podzemnej vody bola narazená v híbke cca 8 metrov (295,900 m.n.m.b.p.v). Základová spára sa nachádza v híbke 11,5 metra (11,13 až $11,93 \mathrm{~m}, \mathrm{z}$ dôvodu sklonu nivelety vozovky v podzemných garážach, tzn. 3,1 až $3,9 \mathrm{~m}$ pod hladinou spodnej vody). Ked'že je v hĺbke základovej spáry nestabilné podložie, a to konrétne íl, musia byṫ základy opatrené mikropilotami, ktoré ukotvia spodnú stavbu do bridlice narazenej v híbke 12m. Toto opatrenie slúži aj ako prevencia vyplavenia stavby tlakovou vodou. Zaiste nie stavebnej jamy bude riešené pomocou záporového paženia. Ako zápory budú použité valcované profily HEB180, dlhé 12 m , ktoré sa osadia do predvŕtaných jám. Zápory budú fixované do betónových základov. Paženie bude prebiehat po obvode celého bloku. Osová vzdialenost' pažníc je $1,2 \mathrm{~m}$. V každom druhom poli budú inštalované horninové kotvy, dlhé 4-1m, so zapustenou hlavicou. Stavebná jama bude široká $18,25 \mathrm{~m}$. Počas výkopových prác bude hladina podzemnej vody regulovaná pomocou odčerpávacích studní. K tomuto účelu budú zabezpečené kalové čerpadlá. V miestach s nižšou základovou spárou sa odporúča zdvojnásobit' počet čerpadiel. Stavebná spára je navrhnutá so strechovitým sklonom cca 1-2\% na strany výkopu do dvojice drenážnych potrubí, ktoré sa zaústia do odčerpávacích studní v najnižších bodoch bloku. Po dokoncení spodnej stavby nebude paženie demontované - ostáva trvalou súčastou konštrukcie.

E.1.4 Návrh trvalých záborov staveniska s vjazdmi a výjazdmi zo staveniska s väzbou na vonkajší dopravný systém.

Väčšina staveniska sa rozprestiera v priestore budúceho vnútrobloku, návrh však počíta aj s dočasným záborom do ulice, na pozemku HI. mesta Praha. Dochádza tu k zúženiu cestnej komunikácie zo 6 m na 5 m . Nedôjde k zníženiu cestných pruhov, bude však nutné obmedzit' maximálnu povolenú rýchlost' v tomto úseku. Tento zábor o vel'kosti $6,4 \times 24,5 \mathrm{~m}$ slúži ako vstup na stavenisko, a to aj pre chodcov aj pre vozidlá stavby. Zábor je po celom obvode oplotený stavebným plotom s plachtou proti šíreniu prachu. Na oplotení budú tabul'ky zakazujuce vstup nepovolaných osôb. Je tu navrhnutá vrátnica v docasnom stavebnom kontajneri od výrobcu ToiToi, okrem toho tu budú umiestnené odpadové nádoby na plasty, kovy, betón, stavebný odpad a nebezpečný odpad. Vozidlám privážajúcim stavebné materiály bude umožnený vjazd do oploteného záboru. V zábore je jednosmerná stavebná komunikácia určená na zastavenie vozidiel a vyloženie alebo naloženie materiálov. Komunikácia ústi opät' na ulicu za križovatkou. V okolí stavby bude umiestnené dočasné zvislé dopravné značenie informujúce o prebiehajúcej stavbe a vychádzajúcich vozidlách. Hlavný vstup pre peších pracovníkov je takisto cez tento zábor. Pracovníci sa pri príchode na stavbu prihlásia na vrátnici a pomocou stavebného výtahu č. 1 sa dostanú na dno stavebnej jamy. Na opačnej strane jamy je umiest nený stavebný výťah č.2, ktorým sa dostanú do priestoru zariadenia staveniska.

E.1.5 Ochrana životného prostredia počas výstavby.

Ochrana ovzdušia: je riešená pomocou plachiet proti šíreniu prachu na oplotení staveniska a na fasádnom lešení.

Ochrana podzemných a povrchových vôd: je riešená pomocou nepriepustnej podložky na vymedzenom mieste, kde bude prebiehat' čistenie debnenia. Znečistená voda bude zachytená do dočasnej žumpy, ktorá bude v prípade potreby priebežne odčerpávaná a po ukončení stavebných prác zlikvidovaná.

Ochrana pôdy: Odkopaná pôda bude odvážaná na skládku. Jej vrchná ohumusovaná vrstva bude ponechaná a neskôr použitá pri čistých terénnych úpravách.

Ochrana zelene: Na stavenisku sa nenachádzajú žiadne ekologicky významné stromy, len nízke náletové dreviny a trávy, ktoré nebudú pri stavebných prácach chránené ani zachované.

Ochrana pred hlukom a vibráciami: Stavebné práce budú prebiehat' výhradne medzi 6:00 až 22:00, teda mimo nočný klud.

Ochrana pozemných komunikácií: Stavebná technika bude pred opustením stavby očistená a spevnené plochy v okolí stavby budú priebežne čistené vodou.

Riešenie odpadu zo stavby: Na stavenisku sú umiestnené odpadové nádoby na plasty, kovy, betón, stavebný odpad, nebezpečný odpad a komunálny odpad. Tieto nádoby budú priebežne vyprázdňované. Na nebezpečný odpad bude použitá špeciálna nepriepustná nádoba a jeho likvidácia bude zabezpečená špecializovanou firmou.

E.1.6 Riziká a zásady bezpečnosti a ochrany zdravia pri práci na stavenisku, posúdenie potreby koordinátora bezpečnosti a ochrany zdravia pri práci a posúdenie potreby vypracovania plánu bezpečnosti práce.

Podl'a § 14 odst. 1 zákona č. 309/2006 Sb., je na stavbu, ktorej sa zúčastňuje viac ako jeden zhotovitel' nutné povolat' koordinátora BOZP už pri príprave stavby. Koordinátor vypracuje a bude priebežne aktualizovat' plán bezpečnosti práce a bude prítomný počas celých stavebných prác až po kolaudáciu stavby.

Okrem iného musí byt́ stavenisko po celom obvode oplotené plotom s výškou minimálne $1,8 \mathrm{~m}$ so vstupom a výstupom v blízkosti vrátnice, tak aby sa zamedzilo prístupu nepovolaných osôb na stavbu. Po obvode stavebnej jamy bude zábradlie s výškou 1,1m ako ochrana proti padu. Pri betonazi konśtrukcií budú po obvode stavby instalovane speciálne diely debniaceho systému s ochranným zábradlím proti pádu s výškou 1,1m. Iné otvory, jamy a šachty na stavbe budú prekryté poklopmi s adekvátnou únosnostou. Všetky osoby pohybujúce sa v priestore staveniska sú povinné nosit' ochrannú prilbu. Stavebnú techniku smú používat' iba oprávnené a kvalifikované osoby

FAKULTA ARCHITEKTURY ČVUT V PRAZE
BAKALÁRSKA PRÁCA AR 2023/2024 LETNÝ SEMESTER
ATELIÉR Atelier Kohout-Tichý
ÚSTAV 15118 Ústav nauky o budovách
VEDÚCI prof. Ing. arch. Michal Kohout
ASISTENT doc. Ing. arch. David Tichý Ph.D.
KONZULTANT Ing. Radka Navrátilová, Ph.D.
AUTOR Max Neradný
PROJEKT DRUŽSTVO NOVŠIE DVORY
\qquad
BETONÁŽ ZVISLÝCH KONŠTRUKCIÍ
E.2.3 ČíSLO
1:100 MIERKA
2xA4 FORMÁT
30.11.2023 DÁTUM

	FAKULTA ARCHITEKTURY ČVUT V PRAZE
BAKALAR AR LETNY	ÁRSKA PRÁCA 2023/2024 Ý SEMESTER
Atelier	ATELIÉR Kohout-Tichý
15118 Ústav	ÚSTAV nauky o budovách
prof. Ing. ar	VEDÚCI rch. Michal Kohout
doc. Ing. arch	ASISTENT ch. David Tichý Ph.D.
Ing. Radka	KONZULTANT Navrátilová, Ph.D.
	AUTOR ax Neradný
DR NOVŠ	PROJEKT RUŽSTVO IŠIE DVORY
	ZÁSADY ZÁCIE VÝSTAVBY
	BETONÁŽ ÝCH KONŠTRUKCIÍ
E.2.4	čílLo
1:100	MIERKA
2xA4	FORMÁT
30.11.2023	3 DÁTUM

F. 1 Technická správa
F.1.1 Koncepčné riešenie interiéru
F.1. 2 Materiálové riešenie interiéru
F. 2 Výkresová čast'
F.2.1 Pôdorys vstupnej haly v 1NP
F.2.2 Rez vstupnou halou
F.2.3 Tabul'ka použitých výrobkov 101-109
F.2.4 Tabul'ka použitých výrobkov I10-I19
F.2.5 Detail zábradlia 1:5

ČASŤ F

PROJEKT INTERIÉRU

BAKALÁRSKA PRÁCA:
VYPRACOVAL:
VEDÚCI PRÁCE:
KONZULTANTI:

SEMESTER:
ATELIÉR:

Družstvo Novšie Dvory
Max Neradný
prof. Ing. arch. Michal Kohout
doc. Ing. arch. David Tichý, Ph.D. Ing. arch. Jan Hlavín, Ph.D. doc. Dr. Ing. Martin Pospísil, Ph.D.
Ing. Marta Bláhová
Ing. Dagmar Richtrová
Ing. Radka Navrátilová, Ph.D letný semester 2023/2024 Kohout-Tichý

FAKULTA
ARCHITEKTURY
ČVUT V PRAZE

F. 1 Technická správa

F.1.1 Koncepčné riešenie interiéru

Ked’že investorom stavby je družstvo, zdiel'ané priestory patria a slúžia všetkým obyvatel'om budovy, čo sa odzrkadluje v riešení interiéru. V budove je približne $300 \mathrm{~m}^{2}$ zdiel'anej plochy, okrem haly a schodísk, družstevníci zdiel'ajú aj celé ustúpené podlažie. Projekt interiéru sa však zameriava na domové komunikácie. Hlavné vstupné dvere sú skryté v $1,2 \mathrm{~m}$ hlbokom závetrí. Nasleduje zádverie, kde je umiestnená zabudovaná zostava schranok. Za zádverím sa nachádza hala s východom do zdiel'aného vnútrobloku. Z haly sa dá vojst' do výt'ahu, poprípade použit' jedno z dvoch schodísk. Hlavné schodisko vedie do nadzemných podlaží a je voči hale otvorené, vedl'ajšie schodisko vedie do podzemných garáží a je z požiarne-bezpečnostných dôvodov oddelené presklenými dverami. V každom podlaží sa nachádza medzibytová interiérová pavlač so zábradlím. Tieto pavlače sú prístupné z výtahu alebo z požiarne oddeleného schodiska. V streche nad pavlačami je umiestnený pevný svetlík, ktorý do medzibytového priestoru privádza denné svetlo. Pavlače sú navrhnuté v tvare "C" a osovo-súmerne vystriedané, ich tvar v pôdorysnom priemete vytvára zrkadlo rozmeru $1,6 \times 0,8 \mathrm{~m}$ ako pri schodiskových ramenách. Medzi 1NP a 2NP je z požiarne-bezpečnostných dôvodov tento princíp nahradený pochôdznym svetlíkom, ktorý kopíruje priemet spomínaného zrkadla. Toto riešenie má za ciel' zvýšit šance na sociálnu interakciu susedov, a zároveň im priniest' každodenný estetický zážitok z užívania ich bytového domu

F.1.2 Materiálové riešenie interiéru

Zatial' čo fasáda budovy sa snaží pôsobit' nedobytne za použitia obkladových pásikov, projekt interiéru reaguje použitím dreva a materiálov imitujúcich drevo, ktoré majú za ciel' zútulnit' vnútorné priestory budovy a rozšírit' "domov" družstevníkov za hranicu dverí ich bytov Všetky dvere, okná, výťah či zariadenia, s ktorými môžu obyvatelia interagovat' sú navrhnuté vo farbe RAL 7016, ktorá vizuálne vyniká v kombinácii s tónmi dreva a bielymi omietkami. Toto riešenie má za ciel' zlepšit' orientáciu v spoločných priestoroch.

Podlaha v komunikačných priestoroch má nášlapnú vrstvu navrhnutú z keramickej dlažby dvoch vzorov. Vzor 101 imituje drevený patchwork, vzor 102 imituje dosky z dubového dreva. Po obvode miestnosti je pás z dlažby I02, ktorým je orámovaná dlažba IO1. Dlažba má jemný reliéf a protisklzný povrch R10.

Na stenách komunikačných priestorov je obklad z dlažby 102 do výšky $1,2 \mathrm{~m}$, ktorý slúži ako prevencia poškodenia omietky frekventovaným pohybom l'udí, detí a zvierat. Obklad je na hornom líci ukončený drevenou zakončovacou lištou natretou farbou RAL 7016. Zvyšok steny je pokrytý sádrovou omietkou hrúbky 10 mm s bielou farbou.

Na strope sú lepené dosky z polyuretánovej akustickej peny s pyramidálnym vzorom výšky 9 cm a bielej farby (I12). Tieto panely majú za ciel' eliminovat' ozveny vznikajúce pri užívaní chodieb. Obvod stropu lemujú profily z EPS s konkávnym polomerom 25 cm , ktoré sa pretrú omietkou. V 1NP je na strope dodatočný SDK podhl'ad s priamym zavesením s dreveným roštom, pre vedenie niektorých inštalácií a zlepšenie akustickej nepriezvučnosti.

Schodisko v hale je vyrobené z prefabrikovaných dielov dovezených na stavbu. Na stupniciach budú osadené schodové tvarovky (I13) s imitáciou dubového dreva a s protisklznou úpravou. Každá prvá a posledná stupnica v ramene bude farebne odlíšená (I14). Podesty a medzipodesty sú riešené rovnakým princípom ako podlaha - kombináciou I01 a I02

Zábradlie použité na schodisku a na pavlačiach v medzibytovej hale má navrhnuté telo z nerezových jaklov $20 \times 20 \mathrm{~mm}$, s matným lakom RAL 7016. Každý druhý stípik je opatrený konzolou, ktorá je kotvená do ramena schodiska/pavlače. Vzdialenost' medzi vnútornými lícmi stĺpikov je podl'a normy 90 mm . To isté platí aj pre vzdialenost' medzi hranou konštrukcie a spodným vodorovným segmentom zábradlia. Madlo zábradlia je vyrobené z masívneho dubového dreva s ochranným náterom. Madlo je zospodu prikotvené o nosnú nerezovú lištu. Profil madla je $45 \times 45 \mathrm{~mm}$ so zaoblenými hranami konvexným polomerom 10 mm . Madlo je všade vo výške $1,2 \mathrm{~m}$ od podlahy. (pre podrobnejšie informácie ref. výkres D.1.2.24 a F.2.5)

Vypínače a zásuvky v celom objekte sú navrhnuté zo série Schneider Asfora. Zvolené bolo matné prevedenie RAL 7016, ktoré zabezpečí, že budú l'ahko dohl'adatel'né na bielych omietkach stien. Vypínače sú umiestnené vo výške $1,35 \mathrm{~m}$ nad podlahou.

Svietidlá pre bežné užívanie (IO3) budú osadené na strope medzi akustické panely. Spúšt’ané budú bud' manuálne pomocou vypínačov alebo na senzor pohybu (I08). Núdzové evakuačné osvetlenie (I17) sa umiestni vždy na nadpražie dverí v smere úniku.

Parapety použité v celom interiéri budovy sú z vlhkovzdornej lisovanej drevotriesky opatrenej CPL laminátom hrúbky 0,5mm s vzorom a kresbou dubového dreva. Parapety majú nos vysoký 30 mm s presahom 20 mm . Ukončenie po stranách je s ABS hranou.

LEGENDA MATERIÁLOV	
monoltickí železobetón C45/55, OCEL - B500 MURIVo z Pórobetónovích tvárnic NENOSNÉ P2-440, PDK, 2MPa, MC	ARCHITEKTURY ČVUT V PRAZE
	BAKALÁRSKA PRÁCA
MURIVO Z PÓROBETÓNOVÝCH TVÁRNIC NOSNÉ P2-440, PDK, 2MPa, MC	AR 2023/2024
P/TM Prostíbetón/	LETNÝ SEMESTER
\square žeLezobetónové Prefabrikované prvky dOSKY Z MINERÁLNEJ VLNY	ATELIER
DOSKY Z EXPANDOVANÉHO POLYSTYRÉNU $\lambda=0,035 \mathrm{~W} / \mathrm{mK}$ DOSKY Z EXTRUDOVANÉHO POLYSTYRÉNU	15118 Ústav nauky o budovách
dosky z cementu a eps granulátu $\lambda=0,061 \mathrm{~W} / \mathrm{mk}$	prof. Ing. arch. Michal Kohout
	ASISTENT
ZAASY Ştrkem Frakcia $0 / 32 \mathrm{M}$	doc. Ing. arch. David Tichý Ph.D.
RIEČNE KAMENIVO FRAKCIA 16/22MM	KONZULTANT
Pôvodná zEMINA	Ing. arch. Jan
	AUTOR
LEGENDA VÝROBKOV 101 - KERAMICKÁ DLAŽBA 102-KERAMICKÝ OBKLAD 103-STROPNÉ SVIETIDLO 104 - VYPÍNAČE / ZVONČEKY IO5-ZOSTAVA SCHRÁNOK 106 - VENTILAČNÁ MREŽA 107 - DVERNÁ STANICA 108 - POHYBOVÉ ČIDLO 109 - VSTAVANÝ HYDRANT I10 - UKONČOVACIA LIŠTA I11-PODLAHOVÝ SVETLÍK 112-AKUSTICKÁ PENA 113-SCHODOVÁ TVAROVKA A 114 - SCHODOVÁ TVAROVKA B I15-OKENNÝ PARAPET 116 - DOSKOVÝ RADIÁTOR 117-NÚDZOVÉ OSVETLENIE \|18-SKRYTÉ ROLETY	Max Neradný
	DRUŽSTVO NOVŠIE DVORY
	ARCHITEKTONICKOSTAVEBNÉ RIEŠENIE
	ZMENŠENÝ PÔDORYS VSTUPNEJ HALY
	F.2.1m ČÍSLO
	1:50 MIERKA
	$2 \mathrm{xA4}$ FORMÁT
	20.05.2024 DÁTUM

KÓD 101	VZHLAD	KÓD 104	VZHL'AD	KÓD 107	VZHL'AD			
PRODUKT dlažba		PRODUKT vypínač		PRODUKT dverná stanica				
MNOŽSTVO cca $120 \mathrm{~m}^{2}$						bAKALÁRSKA PRÁCA AR 2023/2024 LETNÝ SEMESTER		
ROZMER $200 \times 200 \times 8 \mathrm{~mm}$								
VÝROBCA Stone Gallery								
POPIS protišmyková dlažba R10 záruka 20 rokov imitácia dreva		POPIS vypínače z rady Asfora, farba antracit kovový rám + ABS plast				POPIS dotykové tlačítka LCD display 4,3" vodeodolnost IP65 čítačka kariet farebná kamera	ATELIÉR Atelier Kohout-Tichý	
							15118 Ústav nauky o budovách	
							VEDÚCl prof. Ing. arch. Michal Kohout	
KÓD 102	VZHL'AD	KÓD 105		VZHL'AD		KÓD 108	VZHL'AD	prof. Ing. arch. Michal Kohout
PRODUKT dlažba/obklad		PRODUKT schránky			PRODUKT pohybové čidlo	ASISTENT		
MNOŽSTVO cca $60 \mathrm{~m}^{2}$		POČET 20ks	POČET 20ks		doc. Ing. arch. David Tichý Ph.D.			
ROZMER 20x120x10mm		ROZMER 300x110x370mm	ROZMER $\quad \emptyset 77 \times 70 \mathrm{~mm}$		KONZULTANT			
VÝROBCA Stone Gallery		VÝROBCA Klučka s.r.o.	VÝROBCA Optonica		Ing. arch. Jan Hlavín Ph.D.			
POPIS protišmyková dlažba R10 záruka 20 rokov		zostava 20 schránok zabudovaná do steny farba RAL 7016 $1500 \times 480 \times 370 \mathrm{~mm}$	infračervené čidlo pohybu dosah 12 m uhol činnosti 180° krytie IP54		Max Neradný ${ }^{\text {AUTOR }}$			
imitácia dreva					PROJEKT DRUŽSTVO NOVŠIE DVORY			
KÓD 103	VZHL'AD	KÓD 106	VZHL'AD	KÓD 109	VZHL'AD	PROJEKT INTERIÉRU TABUL'KA VÝKRES POUŽITẎCH VÝROBKOV		
PRODUKT svietidlo		PRODUKT vent. mriežka		PRODUKT hydrant				
POČET 33ks		POČET 8ks		POČET 10ks				
ROZMER \quad ¢295x90mm		ROZMER 450x400mm		ROZMER 710x710x245mm				
VÝROBCA Lindby		VÝROBCA Dalap		VÝROBCA PH Plus				
POPIS stropné svietidlo		POPIS prívod vzduchu do CHÚC		POPIS presklená skrinka		F.2.3 ČísLo		
imitácia dreva		farba RAL 7016		hydrant DN 25		MIERKA		
						2xA4 FORMÁT		
						24.04.2024 DÁTUM		

KÓD 110	VZHL'AD	KÓD 113	VZHL'AD	KÓD 116	VZHLAD	
VÝR. ukončovacia lišta		PRODUKT schodovka		PRODUKT radiátor		
MNOŽSTVO $\quad 110 \mathrm{~m}$		POČET 117ks		POČET 20ks		BAKALÁRSKA PRÁCA
ROZMER $\quad 25 \times 17 \mathrm{~mm}$		ROZMER 298x1198x10mm		ROZMER 30x180x10cm		AR 2023/2024
VÝROBCA Woodea		VÝROBCA Rako		VÝROBCA Korado		LETNY SEMESTER
POPIS drevená ukončovacia lišta (horný lem obkladu stien)		POPIS keramická schodová tvarovka s nosom použitá ako typ. stupnica vzor dubového dreva protisklznost' R10		POPIS doskový radiátor typu 22		ATELIÉR Atelier Kohout-Tichý
				bočné pripojenie farba RAL 9016		ÚSTAV 15118 Ústav nauky o budovách
						VEDÚCI
KÓD III	VZHL'AD	KÓD 114	VZHL'AL	KÓD 117	VZHL'AD	prof. Ing. arch. Michal Kohout
PROD. podlahový svetlík		PRODUKT schodovka		PRODUKT núdz. svietidlo		ASISTENT
MNOŽSTVO 1ks		POČET 26ks		POČET 20ks		doc. Ing. arch. David Tichý Ph.D.
ROZMER $1600 \times 800 \mathrm{~mm}$		ROZMER 298x1198x10mm		ROZMER 269x144x42mm		KONZULTANT
VÝROBCA Glassfloor		VÝROBCA Rako		VÝROBCA Intelight		Ing. arch. Jan Hlavín Ph.D.
POPIS pochôdzny podlahový svetlík Glassfloor PURE		POPIS keramická schodová tvarovka s nosom, použitá ako prvá a		POPIS evakuačné svietidlo pre osvetlenie chránených		AUTOR Max Neradný
		posledná stupnica v ramene vzor antracit-betón protiskknost R10		unikových ciest krytie IP44		PROJEKT DRUŽSTVO NOVŠIE DVORY
KÓD 112	VZHL'AD	KÓD 115	VZHL'AD	KÓD 118	VZHLAD	
PRODUKT akustická pena		PRODUKT parapet		PRODUKT rolety		PROJEKT
POČET 400ks		POČET 8ks		POČET 10ks		INTERIERU
ROZMER $500 \times 500 \times 90 \mathrm{~mm}$		ROZMER -		ROZMER		VÝKRES
VÝROBCA Ambrilo		VÝROBCA ExpoWin		VÝROBCA Bandalux		TABULKA POUŽITÝCH VÝROBKOV
POPIS dosky z polyuretánovej akustickej peny		POPIS drevotrieskový parapet vzor dubového dreva s nosom a ABS hranou		POPIS		
				vstavaná textilná roleta		F.2.4 ČísLo
				do exteriéru		MIERKA
vzor ihlany, farba biela				s vodiacou lištou		2xA4 FORMÁT
$\mathrm{aw}=0,38$				farba biela		24.04.2024 DÁTUM

Atelier Kohout-Tichy
ÚSTAV
15118 Ústav nauky o budovách
VEdÚCI
prof. Ing. arch. Michal Kohout
ASISTENT
doc. Ing. arch. David Tichý Ph.D.
kONZULTANT
Ing. arch. Jan Hlavín Ph.D.

Max Neradný
PROJEKT
DRUŽSTVO
NOVŠIE DVORY

[^0]: $A_{s, \text { min }}=\left(F_{b}-0,8 A_{c} \cdot f_{c d}\right) / f_{y d}$
 $A_{s, \text { min }}=(6774,204-0,8 \cdot 0,3 \cdot 30000) / 434782$
 $A_{s, \text { min }}=979,332 \mathrm{~mm}^{2}$ » $A_{s}=1018 \mathrm{~mm}^{2}$ (4x018)

